SIMULTANEOUS PROTECTION AND ACTIVATION OF AMINO ACIDS USING PROPARGYL PENTAFLUOROPHENYL CARBONATE

Ramapanicker Ramesh, Sakthidevi Rajasekaran, Rohit Gupta and Srinivasan

Chandrasekaran*

Department of Organic Chemistry, Indian Institute of Science

Bangalore-560012, India

SUPPORTING INFORMATION

Table of Contents

Experimental Procedures and	Page Numbers S2-S16	
Characterization Data		
¹ H, ¹³ C and ¹⁹ F spectra of compounds	Page Numbers S17-S55	

Experimental Procedures

All reactions were performed in oven dry apparatus and were stirred magnetically. Melting points and optical rotation values (recorded at 25 °C) reported are uncorrected. Infrared spectra were recorded using an FT-IR instrument and the frequencies are reported in wave number (cm⁻¹) and intensities of the peaks are denoted as s (strong), w (weak), m (medium). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 300 MHz, 75 MHz and 282 MHz spectrometer respectively. Chemical shifts are reported in parts per million downfield from the internal reference, tetramethylsilane for ¹H and ¹³C NMR and with trifluoroacetic acid as external reference for ¹⁹F NMR. Multiplicity is indicated using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), sb (broad singlet) and db (broad doublet). Coupling constants are reported wherever it is necessary in Hertz (Hz). Mass spectra were recorded on a Q-TOF electrospray instrument. *Note:* The carbon atoms in the pentafluorophenyl ring are not observed in the ¹³C NMR spectra as clear single lines due to extensive coupling with ¹⁹F.

Preparation of Propargyloxycarbonyl Chloride $(PocCl)^5$

To a stirred solution of triphosgene (2.23 g, 7.5 mmol) in dry ether (30 mL), activated charcoal (0.05g) was added and stirred for 1 h at room temperature (28 °C). The solution was cooled to 0 °C and propargyl alcohol (0.9 mL, 15 mmol) in dry ether (10 mL) was added drop wise. The resultant solution was stirred for 12 hours and filtered. The ether layer was concentrated under reduced pressure and the remaining liquid was used for reactions without any further purification.

Preparation of Propargyl Pentafluorophenyl Carbonate (PocOPfp, 1)⁴

PocCl (10 mmol) was added to a stirred solution of pentafluorophenol (1.84g, 10 mmol) in dichloromethane (30 mL) at -10 °C. The solution was stirred for 10 min and triethylamine (1.4 mL, 10 mmol) was added dropwise over a period of 15 min. After 4 h

the reaction mixture was diluted with dichloromethane (50 mL) and washed with 0.5N HCl (20 mL), water (2x20 mL) and brine solution (20 mL). The solution containing PocOPfp was dried over anhydrous Na_2SO_4 and was purified by silica gel (100-200 mesh) column chromatography, eluting with 3% solution of ethyl acetate in hexane.

Yield:	98%	
Physical state:	White crystalline solid	
Melting Point:	65 °C	
FTIR (KBr):	3302 (m), 2134 (w), 1790 (s), 1526 (s)	
¹ H NMR (300 MHz, CDCl ₃):	δ 4.90 (d, 2H, <i>J</i> =2.7), 2.65 (t, 1H, <i>J</i> =2.3)	
¹³ C NMR (75 MHz, CDCl ₃):	δ 150.8, 142.9, 139.5, 138.3, 138.3, 136.0,	
	77.2, 75.3, 57.5	

Preparation of Propargyloxycarbonyloxy Succinimide (PocOSu, 7)

PocCl (10 mmol) was added to a stirred solution of *N*-hydroxysuccinimide (1.15 g, 10 mmol) in dichloromethane (30 mL) at -10 °C. The solution was stirred for 10 min and triethylamine (1.4 mL, 10 mmol) was added dropwise over a period of 15 min. After 5 h the reaction mixture was diluted with dichloromethane (50 mL) and washed with 0.5N HCl (20 mL), water (2x20 mL) and brine solution (20 mL). The solution containing PocOSu was dried over anhydrous Na₂SO₄ and was purified by silica gel (100-200 mesh) column chromatography, eluting with 20% solution of ethyl acetate in hexane.

¹ H NMR (300 MHz, CDCl ₃):	δ 4.90 (d, J=2.1, 2H), 2.85 (s, 4H), 2.66 (t, J=2.1,	
	1H)	
¹³ C NMR (75 MHz, CDCl ₃):	δ 168.3, 151.2, 77.6, 75.0, 58.1, 25.4	
High Resolution ESMS (m/z):	Calculated for C ₈ H ₇ NO ₅ +Na: 220.0222	
	Observed: 220.0218	

General Procedure for the Activation of N-Protected Amino Acids as Pentafluorophenyl Esters Using PocOPfp

A solution of the *N*-protected amino acid (1 mmol) and PocOPfp (0.292 g, 1.1 mmol) in DMF (2 mL) was cooled to -10 °C. Pyridine (0.88 mL, 1.1 mmol) was added to this solution drop wise while stirring it magnetically. The reaction mixture was stirred for 3 h and was diluted with dichloromethane (30 mL). It is then washed with 0.5N HCl (10 mL), water (2x10 mL) and brine solution (10 mL) and dried over anhydrous Na₂SO₄. The active esters were then purified by silica gel (100-200 mesh) column chromatography eluting with ethyl acetate-hexane mixtures of appropriate concentration (5-20%).

Boc-Pro-OPfp (4a)

Yield:	88% (Mixture of two rotamers)
Physical State:	Oily Liquid
Optical Rotation:	$[\alpha]_{D}$ -64.00 (c=1.0, ethanol)
FTIR (Neat):	1797 (s), 1705 (s)
¹ H NMR (300 MHz, CDCl ₃):	δ 4.66-4.57 (m, 1H), 3.67-3.41 (m, 2H), 2.51-2.35
	(m, 1H), 2.35-2.18 (m, 1H)-2.11-1.91 (m, 2H), 1.47
	(d, 9H)
¹³ C NMR (75 MHz, CDCl ₃):	δ 169.2, 169.0, 80.8, 80.4, 77.4, 77.0, 76.5, 58.5,
	58.5, 46.5, 46.3, 31.2, 30.0, 28.2, 28.0, 24.4, 23.4
¹⁹ F NMR (282 MHz, CDCl ₃):	δ -40.73 (d, 2F), -45.94 (t, 2F), -50.39 (t, 1F)
High Resolution ESMS (m/z):	Calculated for C ₁₆ H ₁₆ F ₅ NO ₄ +Na: 404.0897
	Observed: 404.0902

Boc-Leu-OPfp (4b)

Yield: Physical State: Optical Rotation:

FTIR (Neat):

¹H NMR (300 MHz, CDCl₃):

¹³C NMR (75 MHz, CDCl₃):

¹⁹F NMR (282 MHz, CDCl₃): High Resolution ESMS (m/z): 89% Oily Liquid [α]_D -13.00 (c=1.0, ethanol) 3289 (m), 1777 (s), 1710 (s) δ 4.90 (d, *J*=2.4, 1H), 4.66-4.59 (m, 1H), 1.87-1.62 (m, 3H), 1.46 (s, 9H), 1.01 (d, *J*=6.0, 6H) δ 169.6, 155.2, 80.5, 77.4, 77.0, 76.5, 52.1, 41.1, 28.2, 24.8, 22.7, 21.7 δ -40.60(d, 2F), -46.02(t, 2F), -50.52 (t, 1F) Calculated for C₁₇H₂₀F₅NO₄+Na: 420.1210 Observed: 420.1211

Cbz-Phe-OPfp (4c)

Yield: Physical State: Melting Point: Optical Rotation: FTIR (KBr): 85%
White crystalline solid
96 °C
[α]_D +54.00 (c=1.0, ethanol)
3322 (m), 1791 (s), 1714 (s)

¹ H NMR (300 MHz, CDCl ₃):	δ 7.37-7.19 (m, 10H), 5.47 (d, J =7.8, 1H), 5.10 (s,
	2H), 4.5.06-4.97 (m, 1H), 3.35-3.18 (m, 2H)
¹³ C NMR (75 MHz, CDCl ₃):	δ 168.0, 155.5, 135.8, 134.5, 129.2, 128.9, 128.5,
	128.2, 128.1, 127.5, 67.3, 54.6, 37.7
¹⁹ F NMR (282 MHz, CDCl ₃):	δ -40.03 (d, 2F), -45.44 (t, 3F), -50.12 (t, 1F)
High Resolution ESMS:	Calculated for C ₂₃ H ₁₆ F ₅ NO ₄ +Na: 488.0897
	Observed: 488.0900

General Procedure for the Simultaneous Protection and Activation of Amino Acids Using PocOPfp

A solution of the amino acid (1 mmol) and PocOPfp (0.559 g, 2.1 mmol) in DMF (2 mL) was cooled to -10 °C and pyridine (0.177 mL, 2.2 mmol) was added to it dropwise. The reaction mixture was allowed to attain room temperature slowly and was stirred for 3-5 hours. The reaction mixture was then diluted with dichloromethane (30 mL) and washed with 0.5N HCl (10 mL), water (2x10 mL) and brine (10 mL). The resulting solution was dried over Na₂SO₄ and concentrated under vacuum and the products were purified by silica gel (100-200 mesh) column chromatography eluting with ethyl acetate hexane mixtures of appropriate concentration (5-20%).

Pentafluorophenyl m-(N-Poc)aminobenzoate (6a)

Yield: Physical State: Melting Point: FTIR (KBr): ¹H NMR (300 MHz, CDCl₃):

92%
White crystalline solid
99 °C
3309 (m), 2130 (w), 1758 (s), 1716 (s)
δ 8.20 (m, 1H), 7.92-7.89 (m, 1H), 7.81-7.78 (m, 1H), 7.49 (t, *J*=8.1, 1H), 7.12 (s, 1H), 4.80 (d, *J*=2.1, 2H), 2.53 (t, *J*=2.1, 1H)

¹³ C NMR (75 MHz, CDCl ₃):	$\delta \ 162.2, \ 152.4, \ 138.2, \ 129.7, \ 127.7, \ 125.8, \ 124.7,$
	120.5, 77.4, 75.2, 55.0
¹⁹ F NMR (282 MHz, CDCl ₃):	δ -40.42 (d, 2F), -45.52 (t, 1F), -50.28 (t, 2F)
High Resolution ESMS (m/z):	Calculated for C ₁₇ H ₈ F ₅ NO ₄ +H: 386.0451
	Observed: 386.0449

Pentafluorophenyl o-(N-Poc)aminobenzoate (6b)

Yield:	90%
Physical State:	White solid
Melting Point:	125 °C
FTIR (KBr):	3280 (m), 2138 (w), 1783 (s), 1722 (s)
¹ H NMR (300 MHz, CDCl ₃):	δ 10.02 (s, 1H), 8.55-8.52 (m, 1H), 8.26 (m, 1H),
	7.72-7.66 (m, 1H), 7.26-7.15 (m, 1H), 4.78 (d,
	<i>J</i> =2.4, 2H), 2.50 (t, <i>J</i> =2.4, 1H)
¹³ C NMR (75 MHz, CDCl ₃):	$\delta \ 164.0, \ 152.3, \ 142.5, \ 136.6, \ 131.7, \ 122.3, \ 119.2,$
	111.6, 77.4, 75.1, 52.9
¹⁹ F NMR (282 MHz, CDCl ₃):	δ -40.63 (d, 2F), -45.49 (t, 1F), -50.31 (t, 2F)
High Resolution ESMS (m/z):	Calculated for C ₁₇ H ₈ F ₅ NO ₄ +Na: 408.0271
	Observed: 408.0275

Poc-Leu-OPfp (6c)

O N H F 0、 ∬ 0 F

Yield:

82%

Physical State: Optical Rotation: FTIR (Neat): ¹H NMR (300 MHz, CDCl₃):

¹³C NMR (75 MHz, CDCl₃):

¹⁹F NMR (282 MHz, CDCl₃): High Resolution ESMS (m/z):

Poc-Ala-OPfp (6d)

Gummy solid $[\alpha]_D$ -166.00 (c=1.0, ethanol) 3318 (m), 2126 (w), 1793 (s), 1718 (s) δ 5.36 (d, *J*=8.1, 1H), 4.79-4.66 (m, 3H), 2.50 (t, *J*=2.4, 1H), 1.86-1.69 (m, 3H), 1.01 (d, *J*=5.7, 6H) δ 169.2, 155.0, 77.4, 75.0, 53.1, 52.4, 41.1, 24.7, 22.6, 21.5 δ -40.70 (d, 2F), -45.65 (t, 1F), -50.36 (t, 2F) Calculated for C₁₆H₁₄F₅NO₄+Na: 402.0741 Observed: 402.0749

Yield:
Physical State:
Optical Rotation:
FTIR (Neat):
¹ H NMR (300 MHz, CDCl ₃):

¹³C NMR (75 MHz, CDCl₃):
¹⁹F NMR (282 MHz, CDCl₃):
High Resolution ESMS (m/z):

68% Gummy solid [α]_D +11.00 (c=1.0, ethanol) 3297 (m), 2129 (w), 1781 (s), 1714 (s) δ 5.41 (d, *J*=7.2, 1H), 4.78-4.66 (m, 3H), 2.50 (t, *J*=2.4, 1H), 1.63 (d, *J*=7.2, 3H) δ 169.2, 154.6, 77.4, 75.0, 53.0, 49.5, 18.2 δ -40.95 (d, 2F), -45.49 (t, 1F), -50.20 (t, 2F) Calculated C₁₃H₈F₅NO₄+Na: 360.0271 Observed: 360.0274

Poc-Val-OPfp (6e)

O N N O F

Yield:

87%

Physical State:	Gummy solid
Optical Rotation:	$[\alpha]_{D}$ +13.00 (c=1.0, ethanol)
FTIR (Neat):	3313 (m), 2129 (w), 1787 (s), 1720 (s)
¹ H NMR (300 MHz, CDCl ₃):	δ 5.43 (d, J=9.3, 1H), 4.80-4.64 (m, 3H), 2.51 (t,
	J=2.4, 1H), 2.45-2.35 (m, 1H), 1.10 (d, J=6.6, 3H),
	1.03 (d, <i>J</i> =7.2, 3H)
¹³ C NMR (75 MHz, CDCl ₃):	δ 168.1, 155.2, 77.4, 75.0, 59.0, 53.1, 31.1, 18.8,
	17.1
¹⁹ F NMR (282 MHz, CDCl ₃):	δ -40.42 (d, 2F), -45.52 (t, 1F), -50.28 (t, 2F)
High Resolution ESMS (m/z):	Calculated for C ₁₅ H ₁₂ F ₅ NO ₄ +Na: 388.0584
	Observed: 388.0591

Poc-Ile-OPfp (6f)

Yield:	84%	
Physical State:	Gummy solid	
Optical Rotation:	$[\alpha]_{\rm D}$ +26.00 (c=1.0, ethanol)	
FTIR (Neat):	3313 (m), 2130 (w), 1789 (s), 1720 (s)	
¹ H NMR (300 MHz, CDCl ₃):	δ 5.39 (d, J=8.7, 1H), 4.79-4.67 (m, 3H), 2.50 (t,	
	J=2.4, 1H), 2.16-2.01 (m, 1H), 1.59-1.48 (m, 1H),	
	1.36-1.21 (m, 1H), 1.07 (d, J=6.9, 3H), 0.99 (t,	
	<i>J</i> =7.2, 3H)	
¹³ C NMR (75 MHz, CDCl ₃):	δ 168.1, 155.1, 77.4, 75.0, 58.4, 53.1, 37.8, 24.7,	
	15.3, 11.4	
¹⁹ F NMR (282 MHz, CDCl ₃):	δ -40.29 (d, 2F), -45.46 (t, 1F), -50.20 (t, 2F)	
High Resolution ESMS (m/z):	Calculated for C ₁₆ H ₁₄ F ₅ NO ₄ +K: 418.0480	
	Observed: 418.0479	

Poc-Met-OPfp (6g)

Yield: 72% Physical State: Gummy solid **Optical Rotation:** $[\alpha]_{D}$ -17.00 (c=1.0, ethanol) FTIR (Neat): 3286 (m), 2125 (w), 1790 (s), 1718 (s) ¹H NMR (300 MHz, CDCl₃): δ 5.69 (d, *J*=7.8, 1H), 4.93-4.99 (m, 1H), 4.80-4.67 (m, 2H), 2.73-2.61 (m, 2H), 2.51 (t, J=2.4, 1H), 2.40-2.29 (m, 1H), 2.24-2.14 (m, 4H) ¹³C NMR (75 MHz, CDCl₃): δ 168.3, 154.9, 77.4, 75.1, 53.2, 53.0, 31.3, 29.6, 15.3 ¹⁹F NMR (282 MHz, CDCl₃): δ -40.69 (d, 2F), -45.23 (t, 1F), -50.04 (t, 2F) High Resolution ESMS (m/z): Calculated for $C_{15}H_{12}F_5NO_4$ +Na: 420.0305 Observed: 420.0300

Poc-Phe-OPfp (6h)

Yield: Physical State: Melting Point: Optical Rotation: FTIR (KBr): ¹H NMR (300 MHz, CDCl₃): 73% White Solid 82 °C [α]_D +12.00 (c=1.0, ethanol) 3305 (m), 2129 (w), 1793 (s), 1718 (s) δ 7.38-7.21 (m, 5H), 5.29 (d, *J*=8.1, 1H), 5.03-4.96 (m, 1H), 4.74-4.62 (m, 2H), 3.37-3.21 (m, 2H), 2.48 (t, *J*=2.4, 1H) ¹³C NMR (75 MHz, CDCl₃):

¹⁹F NMR (282 MHz, CDCl₃): High Resolution ESMS (m/z):

Poc-Pro-OPfp (6i)

δ 167.8, 154.6, 134.3, 129.2, 28.9, 127.6, 77.4, 75.0, 54.6, 53.1, 37.7 δ -40.05 (d, 2F), -45.31 (t, 1F), -50.04 (t, 2F) Calculated for C₁₉H₁₂F₅NO₄+H: 414.0764 Observed: 414.0766

Yield:	77% (Mixture of two rotamers)
Physical Appearance:	Gummy solid
Optical Rotation:	$[\alpha]_{D}$ -292 (c=1.0, ethanol)
FTIR (Neat):	3297 (m), 2130 (w), 1783 (s), 1687 (s)
¹ H NMR (300 MHz, CDCl ₃):	δ 4.84-4.61 (m, 3H), 3.74-3.45 (m, 2H), 2.55-1.93
	(m, 5H)
¹³ C NMR (75 MHz, CDCl ₃):	δ 177.7, 176.4, 154.8, 153.8, 77.9, 74.8, 74.7, 59.2,
	58.6, 53.3, 53.1, 46.9, 46.6, 30.8, 29.4, 24.2, 23.3
¹⁹ F NMR (282 MHz, CDCl ₃):	δ -40.93 9 (d), -41.39 (d), -45.78 (t), -46.07 (t), -
	50.41 (t), -50.62 (t)
High Resolution ESMS (m/z):	Calculated for $C_{15}H_{10}F_5NO_4$ +Na: 386.0428
	Observed: 386.0438

Poc-Aib-OPfp (6j)

Ν Η [] O

Yield:

76%

Physical Appearance:

FTIR (Neat):

Gummy Solid

3313 (m), 2130 (w), 1793 (s), 1718 (s)

Yield:

Physical State: Melting Point:

Poc-Gaba-OPfp (6l)

¹H NMR (300 MHz, CDCl₃): 2H), 2.96 (t, J=6.3, 2H), 2.49 (t, J=2.4, 1H) ¹³C NMR (75 MHz, CDCl₃): δ 168.2, 155.4, 77.9, 74.7, 52.6, 36.3, 33.6 ¹⁹F NMR (282 MHz, CDCl₃): High Resolution ESMS (m/z): Calculated for C₁₃H₈F₅NO₄+Na: 360.0271 Observed: 360.0283

Physical Appearance:

Yield:

FTIR (Neat):

6 Gummy solid 3311 (m), 2130 (w), 1787 (s), 1714 (s) δ 5.36 (sb, 1H), 4.70 (d, *J*=2.4, 2H), 3.61 (q, *J*=6.3, δ -40. 98 (d, 2F), -45.91 (t, 1F), -50. 43 (t, 2F)

Poc-(β)**Ala-OPfp** (6k)

¹H NMR (300 MHz, CDCl₃):

¹³C NMR (75 MHz, CDCl₃):

¹⁹F NMR (282 MHz, CDCl₃):

High Resolution ESMS (m/z):

δ 5.48 (s, 1H), 4.72 (d, J=2.4, 2H), 2.48 (t, J=2.4, 1H), 1.71 (s, 6H) δ 170.3, 154.0, 77.2, 74.9, 56.8, 52.8, 25.1 δ -40. 98 (d, 2F), -46.12 (t, 1F), -50. 70 (t, 2F) Calculated for $C_{14}H_{10}F_5NO_4$ +H: 352.0608 Observed: 352.0599

68% White solid 71 °C

S12

FTIR (KBr): ¹H NMR (300 MHz, CDCl₃):

¹³C NMR (75 MHz, CDCl₃):
¹⁹F NMR (282 MHz, CDCl₃):
High Resolution ESMS (m/z):

3309 (m), 2129 (w), 1789 (s), 1710 (s) δ 5.08 (s, 1H), 4.69 (d, *J*=2.4, 2H), 3.33 (q, *J*=6.6, 2H), 2.75 (t, *J*=7.5, 2H), 2.48 (t, *J*=2.4, 1H), 2.04-1.95 (m, 2H) δ 169.0, 155.6, 78.0, 74.6, 52.5, 40.0, 30.4, 24.9 δ -41.19 (d, 2F), -46.31 (t, 2F), -50.68 (t, 1F) Calculated for C₁₄H₁₀F₅NO₄+H: 352.0608 Observed: 352.0608

Poc-Phg-OPfp (6m)

0		F F
~	нÖ F	F

Yield: Physical State: Optical Rotation: FTIR (KBr): ¹H NMR (300 MHz, CDCl₃): ¹³C NMR (75 MHz, CDCl₃):

¹⁹F NMR (282 MHz, CDCl₃): High Resolution ESMS (m/z):

Gummy solid
$[\alpha]_{D}$ +13.00 (c=1.0, ethanol)
3321 (m), 2124 (w), 1795 (s), 1714 (s)
δ 7.46-7.42 (m, 5H), 5.84 (db, <i>J</i> =6.9, 1H), 5.72 (d,
<i>J</i> =6.9, 1H), 4.72 (d, <i>J</i> =2.1, 2H), 2.48 (t, <i>J</i> =2.1, 1H)
δ 167.2, 154.4, 134.2, 129.4, 129.3, 127.4, 77.5,
75.1, 57.9, 53.2
δ -40.08 (d, 2F), -45.33 (t, 2F), -50.10 (t, 1F)
Calculated for C ₁₈ H ₁₀ F ₅ NO ₄ +H: 422.0428
Observed: 422.0435

75%

Cbz-Lys(Poc)-OPfp (6n)

Yield: Physical Appearance: Optical Rotation: FTIR (Neat): ¹H NMR (300 MHz, CDCl₃):

¹³C NMR (75 MHz, CDCl₃):

¹⁹F NMR (282 MHz, CDCl₃): High Resolution ESMS (m/z): [α]_D -110.00 (c=1.0, ethanol) 3299 (m), 2127 (w), 1791 (s), 1706 (s) δ 7.35-7.26 (m, 5H), 5.57 (d, *J*=6.6, 1H), 5.14 (s, 2H), 4.94 (sb, 1H), 4.73-4.63 (m, 3H), 3.25-3.15 (m, 2H), 2.44 (s, 1H), 2.06-1.84 (m, 2H), 1.61-1.46 (m, 4H) δ 168.7, 155.9, 155.7, 135.8, 128.5, 128.2, 128.1, 78.1, 74.5, 67.3, 53.5, 52.4, 40.2, 31.4, 29.2, 29.1 δ -40.68 (d, 2F), -45.52 (t, 1F), -50.18 (t, 2F) Calculated for C₂₄H₂₁F₅N₂O₆+Na: 551.1218

Observed: 551.1223

76%

Gummy solid

Poc-Lys(Poc)-OPfp (60)

HN O

Yield: Physical Appearance: Optical Rotation: 57% Gummy solid $[\alpha]_{\rm D}$ -10.00 (c=1.0, ethanol) FTIR (Neat): ¹H NMR (300 MHz, CDCl₃):

¹³C NMR (75 MHz, CDCl₃):

¹⁹F NMR (282 MHz, CDCl₃): High Resolution ESMS (m/z): 3295 (m), 2129 (w), 1793 (s), 1712 (s) δ 5.71 (db, *J*=7.2, 1H), 5.00 (sb, 1H), 4.73-4.68 (m, 5H), 3.31-3.15 (m, 2H), 2.52-2.47 (two triplets, 2H), 2.05-1.91 (m, 2H), 1.645-1.51 (m, 4H) δ 168.5, 155.8, 155.0, 78.1, 77.6, 75.0, 74.6, 53.6, 53.0, 52.5, 40.1, 31.3, 29.2, 21.8 δ -40.74 (d, 2F), -45.45 (t, 1F), -50.18 (t, 2F) Calculated for C₂₀H₁₇F₅N₂O₆+Na: 499.0905 Observed: 499.0911

Poc-Glu(Pfp)-OPfp (6p)

Yield:	62%
Physical Appearance:	Gummy solid
Optical Rotation:	$[\alpha]_{\rm D}$ -21.00 (c=1.0, ethanol)
FTIR (Neat):	3301 (m), 2133 (w), 1791 (s), 1716 (s)
¹ H NMR (300 MHz, CDCl ₃):	δ 5.44 (db, J=8.4, 1H), 4.91-4.90 (m, 1H), 4.77-4.75
	(m, 2H), 3.01-2.83 (m, 2H), 2.65-2.50 (m, 2H),
	2.38-2.25 (m, 2H)
¹³ C NMR (75 MHz, CDCl ₃):	$\delta \ 168.3, \ 167.8, \ 155.0, \ 75.9, \ 75.2, \ 55.7, \ 53.38, \ 53.0,$
	29.1, 27.1
¹⁹ F NMR (282 MHz, CDCl ₃):	δ -40.73 (d, 2F), -40.99 (d, 2F), -44.80 (t, 1F), -
	45.81 (t, 1F), -49.75 (t, 2F), -50.36 (t, 2F)
High Resolution ESMS (m/z):	Calculated for $C_{21}H_9F_{10}NO_6+Na: 584.0168$

Propargyl *m*-(*N*-Poc)aminobenzoate (10)

Physical Appearance:	White solid
Melting Point:	146 °C
FTIR (KBr):	3338 (m), 2129 (w), 1723 (s), 1704 (s)
¹ H NMR (300 MHz, CDCl ₃):	δ 9.35 (sb, 1H), 8.19-8.17 (m, 1H), 7.78-7.69 (m,
	2H), 7.38-7.33 (m, 1H), 4.90 (d, J=2.7, 2H), 4.78
	(d, J=2.7, 2H), 2.61-2.58 (m, 2H)
¹³ C NMR (75 MHz, CDCl ₃):	$\delta \ 165.0, \ 152.5, \ 138.6, \ 129.4, \ 128.4, \ 123.7, \ 123.1,$
	119.2, 77.6, 77.2, 74.8, 74.6, 51.9
High Resolution ESMS (m/z):	Calculated for C ₁₄ H ₁₁ NO ₄ +Na: 280.0586
	Observed: 280.0593

Compound 4a

F O O

¹⁹F NMR (282 MHz, CDCl₃)

Compound 4a

Compound 4b

¹⁹F NMR (282 MHz, CDCl₃)

Compound 4b

Compound 4c

Compound 4c

Compound 6a

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6a

Compound 6b

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6b

Compound 6c

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6c

Compound 6d

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6d

Compound 6e

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6e

Compound 6f

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6f

Compound 6g

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6g

Compound 6h

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6h

Compound 6i

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6i

Compound 6j

¹⁹F NMR (282 MHz, CDCl₃)

<u>Compound 6j</u>

Compound 6k

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6k

Compound 61

¹⁹F NMR (282 MHz, CDCl₃)

Compound 61

Compound 6m

¹⁹F NMR (282 MHz, CDCl₃)

Compound 6m

Compound 6n

Compound 6n

Compound 60

Compound 60

Compound 6p

Compound 6p

Compound 10

¹H NMR (300 MHz, CDCl₃/CD₃SOCD₃)

