Stereoretentive O to C Rearrangement of Vinyl Acetals. Solvent Cage Effects as a Stereocontrol Element.

Yongda Zhang, Nathan T. Reynolds, Kavita Manju and Tomislav Rovis*

Department of Chemistry, Colorado State University Fort Collins, Colorado 80523

Supporting Information

General Methods. All reactions were carried out under an atmosphere of argon in flame-dried glassware with magnetic stirring. Tetrahydrofuran, diethyl ether, and dichloromethane were degassed with argon and passed through two columns of neutral alumina. Toluene was degassed with argon and passed through one column of neutral alumina and one column of Q5 reactant. Column chromatography was performed on EM Science silica gel 60 (230-400 mesh). Thin layer chromatography was performed on EM Science 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light, KMnO₄, aqueous ceric ammonium molybdate, or bromocresol green dips followed by heating.

Melting points were measured with a MelTemp II melting point apparatus outfitted with a Fluke 51 thermocouple and are uncorrected. Infrared spectra were obtained on a Nicolet Avatar 320 FT-IR spectrometer. ¹H NMR and spectra were recorded on a Varian 300, 400, or 500 MHz spectrometer at ambient temperature. Data are reported as follows: chemical shift in parts per million (δ , ppm) from an internal standard [tetramethylsilane (TMS) or deuterated chloroform (CDCl₃)], multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), integration, and coupling constant (Hz). ¹³C NMR were recorded on a Varian 300, 400, or 500 MHz spectrometer at ambient temperature. Chemical shifts are reported in ppm from CDCl₃ taken as 77.0 ppm. Mass spectra were obtained on Fisons VG Autospec.

Vinyl acetals 1, 3, 5, 7, 9, 11, 13, 15, 19 were prepared according to literature methods.^{1,2}

Procedure A: General procedure for the BF₃•OEt₂ mediated rearrangement of vinyl acetals: A flame-dried round bottom flask containing a magnetic stir bar was charged with the vinyl acetal (0.11 mmol). Under an atmosphere of argon, toluene was added *via* syringe (0.5 mL) and the reaction cooled to the desired temperature. BF₃•OEt₂ (16 μ L, 0.12 mmol, neat) was added to the solution *via* syringe and the reaction allowed to stir 30 min. Saturated Na₂CO₃ (2 mL) was added and the mixture allowed to warm to ambient temperature. The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated. Diastereoselectivity was determined by ¹H NMR of the unpurified reaction mixture. Analytically pure material was obtained by column chromatography on silica gel.

¹ Dixon, D. J.; Ley, S. V.; Tate, E. W. J. Chem. Soc.: Perkin Trans 1 2000, 2385.

² Rychnovsky, S. D.; Dahanukar, V. H. J. Org. Chem. **1996**, *61*, 7648

Procedure B: General procedure for the Me₃Al/BF₃•OEt₂ mediated rearrangement of vinyl acetals: A flame-dried round bottom flask containing a magnetic stir bar was charged with the vinyl acetal (0.11 mmol). Under an atmosphere of argon, toluene was added via syringe (0.5 mL) and the reaction cooled to the desired temperature. Me₃Al (0.22 mL, 0.44 mmol, 2.0 M in hexanes) was added dropwise via syringe and the reaction allowed to stir 2 min at that temperature. BF₃•OEt₂ (16 µL, 0.12 mmol, neat) was then added to the solution via syringe and the reaction allowed to stir 30 min. Saturated Na_2CO_3 (2 mL) was added and the mixture allowed to warm to ambient temperature. The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated. Diastereoselectivity was determined by ¹H NMR of the unpurified reaction mixture. Analytically pure material was obtained by column chromatography on silica gel.

trans-6-hexyl-2-(2-oxo-2-phenylethyl)tetrahydropyran (trans-2).¹ According to general procedure A, vinyl acetal 1 (30.0 mg, 0.11 mmol) and BF₃•OEt₂ (16 µL, 0.12 mmol, neat) at -78 °C produced the product as a 95:5 mixture of isomers (trans/cis). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded trans-2 (27.9 mg, 93%), a white solid.

cis-6-hexyl-2-(2-oxo-2-phenylethyl)tetrahydropyran $(c i s-2).^{1}$ According to general procedure **B**, vinyl acetal **1** (30.0 mg, 0.11 mmol), Me₃Al (0.22 mL, 0.44 mmol) and BF₃•OEt₂ (16 µL, 0.12 mmol, neat)

at -78 °C produced the product as a 7:93 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded cis-2 (25.8 mg, 86%), a white solid.

cis-6-hexyl-2-(2-oxo-2-phenylethyl)tetrahydropyran (cis-2).¹ According to general procedure **B**, vinyl acetal **1** (0.5 g, 1.7 mmol), Me₃Al (3.5 mL, 6.8 mmol), BF₃•OEt₂ (0.23 mL, 1.8 mmol, neat) and Toluene (8.5 mL) at -78 °C produced the product as a 3:97 mixture of isomers (trans/cis). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *cis*-2 (0.46 g, 92%).

trans-6-hexyl-2-(2-oxo-2-p-tolylethyl)tetrahydropyran (trans-4). According to general procedure A, vinyl acetal 3 (60.0 mg, 0.22 mmol) and BF₃•OEt₂ (28 µL, 0.22 mmol, neat) at -78 °C produced the product as a 93:7 mixture of isomers (trans/cis).

Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *trans*-4 (54.0 mg, 90%), a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.85 (m, 2H), 7.24 (m, 2H), 4.34 (dddd, 1H, J = 3.6, 6.7, 6.7, 6.7 Hz), 3.71 (m, 1H), 3.27 (dd, 1H, J = 6.6, 15.3 Hz), 3.00 (dd, 1H, J = 6.5, 15.5 Hz), 2.40 (s, 3H), 1.81-1.60 (m, 5H), 0.86 (t, 15.5 Hz), 2.40 (s, 3H), 1.81-1.60 (m, 5H), 0.86 (t, 15.5 Hz), 2.40 (s, 3H), 1.81-1.60 (m, 5H), 0.86 (t, 15.5 Hz), 2.40 (s, 3H), 1.81-1.60 (m, 5H), 0.86 (t, 15.5 Hz), 2.40 (s, 3H), 1.81-1.60 (m, 5H), 0.86 (t, 15.5 Hz), 2.40 (s, 3H), 1.81-1.60 (m, 5H), 0.86 (t, 15.5 Hz), 2.40 (s, 3H), 1.81-1.60 (m, 5H), 0.86 (t, 15.5 Hz), 2.40 (s, 3H), 1.81-1.60 (m, 5H), 0.86 (t, 15.5 Hz), 2.40 (s, 3H), 1.81-1.60 (m, 5H), 0.86 (t, 15.5 Hz), 0.85 (t, 15.5 Hz), 0 3H, J = 7.0 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 198.1, 143.6, 134.7, 129.1, 128.2, 72.0, 67.8, 43.4, 32.8, 31.930.4, 29.7, 29.3, 25.7, 22.7, 21.7, 18.6JR14NaCl, neat) 2931, 2856, 1684, 1606, 1458, 1286, 1180, 1041 cm⁻¹; HRMS $[C_{20}H_{30}O_2+H]^+$ calcd 330.2324. Found 303.2328 (FAB+).

cis-6-hexyl-2-(2-oxo-2-p-tolylethyl)tetrahydropyran (*cis*-4). According to general procedure **B**, vinyl acetal **3** (30.0 mg, 0.11 mmol), Me₃Al (0.22 mL, 0.44 mmol) and BF₃•OEt₂ (16 μL, 0.12

mmol, neat) at -78 °C produced the product as a 4:96 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *cis*-4 (27.6 mg, 92%), a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.86 (2H,m), 7.23 (2H, m), 3.91 (1H, dddd, J = 1.8, 6.4, 6.7, 12.7 Hz), 3.27 (1H, m), 3.27 (1H, dd, J = 15.6, 6.4 Hz), 2.91 (1H, dd, J = 6.1, 15.6 Hz), 2.40 (3H, s), 1.81 (1H, m), 1.72 (1H, m), 1.13-1.60 (14H, m), 0.85 (3H, t, J = 6.8 Hz); ¹³C NMR (75 MHz, CDCl₃) 198.2, 143.5, 134.9, 129.0, 128.3, 78.1, 74.7, 45.5, 36.6, 31.9, 31.9, 31.5, 29.4, 25.5, 23.7, 22.7, IN .7NdGl2; neat) 2929, 2858, 1684, 1606, 1070, 802 cm⁻¹; HRMS [C₂₀H₃₀O₂+H]⁺ calcd 330.2324. Found 303.2324 (FAB+).

trans-6-hexyl-2-(2-oxo-2-[4-bromophenyl])ethyl

tetrahydropyran (*trans-6*). According to general procedure **A**, vinyl acetal **5** (40.0 mg, 0.11 mmol) and $BF_3 \cdot OEt_2$ (16 µL, 0.12 mmol, neat) at -78 °C produced the product as a 95:5 mixture of

isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *trans*-**5** (36.0 mg, 90%), a white solid: Rf = 0.19 (1:9 EtOAc/hex); ¹H NMR (300 MHz, CDCl₃) δ 7.81 (m, 2H), 7.59 (m, 2H), 4.31 (dddd, 1H, J = 7.4 Hz, J = 7.1 Hz, J = 7.1 Hz, J = 3.6 Hz), 3.71 (m, 1H), 3.26 (dd, 1H, J = 15.4, 6.8 Hz), 2.94 (dd, 1H, J = 15.4 Hz, J = 6.4 Hz), 1.80-1.60 (m, 5H), 1.45-1.10 (m, 11H), 0.86 (t, 3H, J = 6.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 197.6, 135.9, 131.7, 129.7, 128.0, 72.1, 67.6, 43.5, 32.6, 31.9, 30.5, 29.5, 29.3, 25.7, 22.7, 18.6, 14.2; IR (NaCl, neat) 2931, 2856, 1686, 1585, 1396, 1286, 1070 cm⁻¹; HRMS [C₁₉H₂₉O₂Br]⁺ calcd 369.1252. Found 369.1251 (FAB+).

nHex 0

cis-6-hexyl-2-(2-oxo-2-[4-bromophenyl])ethyltetrahydropyran (*cis*-6). According to general procedure **B**, vinyl acetal **5** (40.0 mg,

0.11 mmol, Me₃Al (0.22 mL, 0.44 mmol) and BF₃•OEt₂ (16 μ L,

0.12 mmol, neat) at -78 °C produced the product as a 10:90 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *cis*-**6** (32.0 mg, 80%), a white solid: Rf = 0.27 (1:9 EtOAc/hex); ¹H NMR (300 MHz, CDCl₃) δ 7.83 (m, 2H), 7.57 (m, 2H), 3.88 (dddd, 1H, J = 12.8, 7.5, 5.4, 2.5 Hz), 3.26 (dd, 1H, J = 15.5, 7.0 Hz), 3.25 (m, 1H), 2.85 (dd, 1H, J = 15.4, 5.7 Hz), 1.83 (m, 1H), 1.70 (m, 1H) 1.10-1.60 (m, 14H), 0.83 (t, 3H, J = 6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 197.9, 136.2, 131.6, 129.9, 129.9, 78.1, 74.7, 45.6, 36.5, 31.9, 31.9, 31.4, 29.3, 25.5, 23.6, 22.7, 14.2; IR (NaCl, neat) 2929, 2856, 1685, 1585, 1396, 1286, 1070 cm⁻¹; HRMS [C₁₉H₂₉O₂Br]⁺ calcd 369.1252. Found 369.1253 (FAB+).

trans-6-hexyl-2-(2-oxo-propyl)tetrahydropyran (trans-8).¹ According to general procedure **A**, vinyl acetal **7** (30.0 mg, 0.133 mmol) and BF₃•OEt₂ (20 µL, 0.14 mmol, neat) at -78 °C produced the

product as a 95:5 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *trans*-**8** (27.0 mg, 90%), a white solid.

cis-6-hexyl-2-(2-oxo-propyl)tetrahydropyran (*cis*-8).¹ According to general procedure **B**, vinyl acetal **7** (35.0 mg, 0.155 mmol), Me₃Al (0.30 mL, 0.60 mmol) and BF₃•OEt₂ (20 μ L, 0.16 mmol, neat) at -55

°C produced the product as a 12:88 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *cis*-8 (25.0 mg, 71%), a white solid.

trans-6-hexyl-2-(2-oxo-2-cyclohexylethyl)tetrahydropyran (*trans*-10). According to general procedure A, vinyl acetal 9 (30.0 mg, 0.10 mmol) and BF₃•OEt₂ (16 µL, 0.12 mmol, neat)

at -78 °C produced the product as a 95:5 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *trans*-10 (27.0 mg, 90%). ¹H NMR (300 MHz, CDCl₃) δ 4.22 (dddd, 1H, *J* = 3.6, 6.0, 6.0, 6.0 Hz), 3.68 (m, 1H), 2.78 (dd, 1H, *J* = 7.8, 15.9 Hz), 2.47 (dd, 1H, *J* = 5.4, 15.9 Hz), 2.39 (m, 1H), 1.86-1.57 (m, 10H), 1.39-1.16 (m, 16H), 0.88 (t, 3H, *J* = 6.3 Hz); ¹³C NMR (75 MHz, CDCl₃) 212.5, 72.0, 67.7, 51.4, 45.5, 33.2, 32.1, 30.6, 29.9, 28.6, 28.5, 26.2, 20.0, 26.0, 23.0, 18.8, 14.4; IR (NaCl, neat) 2929, 2854, 1708, 1451, 1377, 1039 cm⁻¹; HRMS [C₁₉H₃₅O₂]⁺ calcd 295.2637. Found 295.2640 (FAB+).

cis-6-hexyl-2-(2-oxo-2-cyclohexylethyl)tetrahydropyran (*cis*-10). According to general procedure **B**, vinyl acetal 9 (30 mg, 0.10 mmol), Me₃Al (0.21 mL, 0.40 mmol) and BF₃•OEt₂

(16 µL, 0.12 mmol, neat) at -32 °C produced the product as a 10:90 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *cis*-**10** (25.0 mg, 83%). ¹H NMR (300 MHz, CDCl₃) δ 3.76 (dddd, 1H, J = 2.8, 5.1, 7.5, 12.6 Hz), 3.25 (m, 1H), 2.73 (dd, 1H, J = 7.2, 15.0 Hz), 2.38 (dd, 1H, J = 5.4, 15.0 Hz), 2.39 (m, 1H), 1.86-1.43 (m, 10H), 1.42-1.12 (m, 16H), 0.88 (t, 3H, J = 6.3 Hz) ¹³C NMR (75 MHz, CDCl₃) 212.9, 78.2, 74.9, 51.8, 47.8, 36.8, 32.1, 32.0, 31.7, 29.6, 28.6, 28.3, 26.2, 26.0, 25.9, 25.8, 23.9, 22.9, 14.4; IR (NaCl, neat) 2930, 2855, 1709, 1450, 1373, 1082 cm⁻¹; HRMS [C₁₉H₃₅O₂]⁺ calcd 295.2637. Found 295.2637 (FAB+).

cis-5-phenyl-2-(2-oxo-2-p-tolylethyl)tetrahydropyran (*c i s*-12). According to general procedure A, vinyl acetal 11 (8.0 mg, 0.027 mmol) and BF₃•OEt₂ (60 µL, 0.03 mmol, 0.5 M in PhMe) at -78 °C produced the product as a 5:95 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *cis*-12 (7.6 mg, 95%), a white solid: Rf = 0.44 (1:4 EtOAc/hex); ¹H NMR (300 MHz, CDCl₃) δ 7.88 (m, 2H), 7.46 (m, 2H), 7.19-7.34 (m, 5H), 4.21 (m, 1H), 4.18 (m, 1H), 3.89 (dd, 1H, *J* = 11.9, 3.8 Hz), 3.34 (dd, 1H, *J* = 16.1, 6.4 Hz), 3.02 (dd, 1H, J = 16.0, 6.1 Hz), 2.85 (m, 1H), 2.41 (s, 3H), 2.10 (m, 1H), 1.98 (m, 1H), 1.48-1.68 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 197.7, 144.0, 134.6, 129.1, 128.4, 128.3, 128.2, 128.0, 125.8, 73.5, 70.1, 44.2, 38.6, 29.4, 27.2, 21.7; IR (NaCl, neat) 2931, 1681, 1606, 1180, 1107, 1058, 701 cm⁻¹; HRMS [C₁₉H₂₉O₂Br]⁺ calcd 295.1698. Found 295.1700 (FAB+).

trans-5-phenyl-2-(2-oxo-2-p-tolylethyl)tetrahydropyran (*trans*-12). According to general procedure **B**, vinyl acetal **11** (30 mg, 0.10 mmol), Me₃Al (0.21 mL, 0.40 mmol) and BF₃•OEt₂ (16 μL, 0.12 mmol, neat) at -25 °C produced the product as a 90:10 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *trans*-**12**(25.5 mg, 85%). ¹H NMR (300 MHz, CDCl₃) δ 7.90 (m, 2H), 7.33-7.19 (m, 7H), 4.09-3.97 (m, 2H), 3.48 (dd, 1H, J = 11.1, 11.1 Hz), 3.34 (dd, 1H, J = 16.2, 6.6 Hz), 2.99 (dd, 1H, J =16.2, 6.0 Hz), 2.89-2.78 (m, 1H), 2.42 (s, 3H), 2.09-1.76 (m, 2H), 1.64-1.44 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 191.8, 144.2, 142.4, 135.0, 129.5, 128.8, 128.6, 127.4, 126.8, 74.4, 74.1, 45.2, 42.9, 32.2, 30.7, 21.9; IR (NaCl, neat) 2926, 1682, 1605, 1181, 1108, 1083, 754, 700 cm⁻¹; HRMS [C₁₉H₂₃O₂]⁺ calcd 295.1698. Found 295.1703 (FAB+).

trans-4-methyl-2-(2-oxo-2-p-tolylethyl)tetrahydropyran (*trans*-14). According to general procedure A, vinyl acetal 13 (30.0 mg, 0.130 mmol) and BF₃•OEt₂ (15 μ L, 0.16 mmol, neat) at -78 °C produced the product as a 5:95 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *cis*-14 (28.0 mg, 93%), a white solid: Rf = 0.xx (1:4 EtOAc/hex);

¹H NMR (300 MHz, CDCl₃) δ 7.86 (m, 2H), 7.25 (m, 2H), 4.29 (dddd, 1H, *J* = 9.3, 6.9, 6.6, 3.1 Hz), 3.76-3.88 (m, 2H), 3.28 (dd, 1H, *J* = 15.9, 6.9 Hz), 2.91 (dd, 1H, *J* = 15.9, 6.1 Hz), 2.40 (s, 3H), 2.05 (m, 1H), 1.80 (dddd, 1H, *J* = 13.2, 7.5, 7.5, 4.7 Hz), 1.62 (ddd, 1H, *J* = 13.8, 9.1, 4.7 Hz), 1.49 (dddd, 1H, *J* = 13.6, 4.7, 3.1, 1.6 Hz), 1.26 (m, 1H), 1.09 (d, 3H, *J* = 7.4 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 197.8, 143.7, 134.6, 129.1, 128.2, 68.9, 62.8, 44.0, 37.6, 32.0, 25.0, 21.7, 18.6; IR (NaCl, neat) 2957, 2923, 1682, 1606, 1181, 1080 cm⁻¹; HRMS [C₁₅H₂₁O₂]⁺ calcd 233.1542. Found 233.1538 (FAB+).

 $\begin{array}{c} \overbrace{}^{\text{o}}_{\text{Me}} & cis-4-\text{methyl-2-}(2-\text{oxo-2-}p-\text{tolylethyl})\text{tetrahydropyran} & (cis-14). \\ \text{According to general procedure B, vinyl acetal 13 (23.2 mg, 0.10 mmol),} \\ \text{Me}_{3}\text{Al} (0.21 \text{ mL}, 0.40 \text{ mmol}) \text{ and } \text{BF}_{3}\text{\bullet}\text{OEt}_{2} (16 \ \mu\text{L}, 0.12 \text{ mmol}, \text{neat}) \text{ at } -25 \\ \ ^{\circ}\text{C} \text{ produced the product as a } 11:89 \text{ mixture of isomers } (trans/cis). \\ \text{Purification by} \\ \text{column chromatography on silica gel (10\% \text{ ethyl acetate/hexanes) afforded } cis-14 (18.0 \text{ mg}, 78\%). \\ \ ^{1}\text{H} \text{ NMR} (300 \text{ MHz}, \text{CDCl}_{3}) \delta 7.87 (\text{m}, 2\text{H}), 7.26 (\text{m}, 2\text{H}), 3.99-3.90 (\text{m}, 2\text{H}), \\ 3.46 (\text{ddd}, 1\text{H}, J = 2.1, 11.7, 11.7 \text{ Hz}), 3.28 (\text{dd}, 1\text{H}, J = 6.0, 15.9 \text{ Hz}), 2.91 (\text{dd}, 1\text{H}, J = \\ 6.3, 15.9 \text{ Hz}), 2.41 (\text{s}, 3\text{H}), 1.80-1.08 (\text{m}, 5\text{H}), 0.94 (\text{d}, 3\text{H}, J = 6.6 \text{ Hz}); \\ \ ^{13}\text{C} \text{ NMR} (75 \text{ MHz}, \text{CDCl}_{3}) \delta 198.0, 144.0, 134.9, 129.3, 128.5, 74.3, 68.4, 45.4, 40.8, 34.7, 30.5, 22.6, \\ 22.0; \text{ IR} (\text{NaCl, neat}) 2951, 2924, 1682, 1607, 1258, 1177, 1090 \text{ cm}^{-1}; \text{ HRMS} [\text{C}_{15}\text{H}_{21}\text{O}_{2}]^{+} \\ \text{calcd } 233.1542. \text{ Found } 233.1540 (\text{FAB}+). \\ \end{array}$

trans-6-methyl-2-(2-oxo-2-[4-*tert*-butylphenyl])tetrahydropyran (*trans*-16). According to general procedure A, vinyl acetal 15 (30.0 mg, 0.11 mmol) and BF₃•OEt₂ (16 μ L, 0.12 mmol, neat) at -78 °C produced the product as a 95:5 mixture of isomers (*trans/cis*).

Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *trans*-**16** (27.6 mg, 92%). ¹H NMR (300 MHz, CDCl₃) δ 7.91 (m, 2H), 7.47 (m, 2H), 4.44 (dddd, 1H, *J* = 3.6, 6.6, 6.6, 6.6 Hz,), 3.99 (dqd, 1H, *J* = 3.3, 6.6, 12.6, 12.6 Hz), 3.30 (dd, 1H, *J* = 6.3, 15.9 Hz), 3.08 (dd, 1H, *J* = 6.6, 15.9 Hz), 1.82 -1.62 (m, 4H), 1.47-1.09 (m, 14H); ¹³C NMR (75 MHz, CDCl₃) 198.2, 156.8, 137.7, 128.3, 125.6, 68.0, 67.9, 43.2, 35.4, 31.5, 31.4, 30.3, 19.7, 18.6; IR (NaCl, neat) 2965, 2933, 1681, 1606, 1286, 1192, 1047 cm⁻¹; HRMS [C₁₈H₂₇O₂]⁺ calcd 275.2011. Found 275.2020 (FAB+).

cis-6-methyl-2-(2-oxo-2-[4-*tert*-butylphenyl])tetrahydropyran (*cis*-16). According to general procedure B, vinyl acetal 15 (30 mg, 0.11 mmol), Me₃Al (0.21 mL, 0.44 mmol) and BF₃•OEt₂ (16.6 μ L, 0.13 mmol, neat) at – 78 °C produced the product as a 14:86

mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *cis*-**16** (24.0 mg, 80 %). ¹H NMR (300 MHz, CDCl₃) δ 7.92 (m, 2H), 7.47 (m, 2H), 3.99 (dddd, 1H, *J* = 1.8, 5.4, 7.2, 12.9 Hz), 3.51 (dqd, 1H, *J* = 1.8, 6.0, 12.6, 12.6 Hz), 3.30 (dd, 1H, *J* = 5.1, 16.2 Hz), 2.98 (dd, 1H, *J* = 7.2, 16.2 Hz), 1.85-1.54 (m, 4H), 1.38-1.11 (m, 14H); ¹³C NMR (75 MHz, CDCl₃) 198.0, 156.8, 134.9, 128.3, 125.6, 74.5, 74.30, 45.8, 35.4, 33.4, 31.7, 31.4, 23.8, 22.5; IR (NaCl, neat) 2965, 2932, 1683, 1606, 1218, 1107, 1085, 1067, 990cm⁻¹; HRMS [C₁₈H₂₇O₂]⁺ calcd 275.2011. Found 275.2008 (FAB+).

^{C7H₁₅} (-)

C7H15

cis-7-heptyl-2-(2-oxopropyl)tetrahydrooxepane (*cis*-20). According to general procedure **B**, vinyl acetal **19** (25 mg, 0.10 mmol), Me₃Al (0.21 mL, 0.40 mmol) and BF₃•OEt₂ (16.0 μ L, 0.12 mmol, neat) at – 78

°C produced the product as a 14:86 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded *cis*-**20** (21.0 mg, 84 %). ¹H NMR (300 MHz, CDCl₃) δ 4.17-4.13 (m, 1H), 3.55 (m, 1H), 2.72 (dd, 1H, J = 7.8, 15.6 Hz), 2.38 (dd, 1H, J = 5.1, 15.6 Hz), 2.18 (s, 3H), 1.80-1.77 (m, 4H), 1.46-1.19 (m, 16H), 0.88 (t, 3H, J = 6.3 Hz); ¹³C NMR (75 MHz, CDCl₃) 207.6, 75.6, 70.5, 50.8, 36.6, 36.3, 36.2, 32.1, 31.4, 29.9, 29.6, 27.8, 27.2, 26.7, 23.0, 14.4; IR (NaCl, neat)

2926, 2854, 1717, 1456, 1356, 1101 cm⁻¹; HRMS $[C_{16}H_{31}O_{2}]^{+}$ calcd 255.2324. Found 255.2315 (FAB+).

cis-2-(5-butyl-tetrahydo-furan-2-yl)-1-phenyl-ethanone (cis-22)

According to general procedure **B**, vinyl acetal *cis*-**21** (25 mg, 0.10 mmol), Me₃Al (0.21 mL, 0.40 mmol) and BF₃•OEt₂ (16.0

 μ L, 0.12 mmol, neat) at – 78 °C produced the product as an 8:92 mixture of isomers Purification by column chromatography on silica gel (10% ethyl (trans/cis). acetate/hexanes) afforded *cis*-22 (21.0 mg, 85 %). ¹H NMR (300 MHz, CDCl₃) δ 7.99-7.94 (m, 2H), 7.58-7.52 (m, 1H), 7.48-7.42 (m, 2H), 4.42-4.33 (m, 1H), 3.86-3.77 (m, 1H), 3.43 (dd, 1H, J = 5.7, 15.9 Hz), 3.03 (dd, 1H, J = 7.5, 15.8Hz), 2.22-2.09 (m, 1H), 2.06-1.93 (m, 1H), 1.62-1.23 (m, 8H), 0.89 (t, 3H, J = 6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) 198.5, 137.2, 133.2, 128.6, 128.3, 79.8, 75.5, 45.5, 36.1, 31.7, 31.3, 28.6, 23.1, 14.4; IR (NaCl, neat) 2956, 2930, 2859, 1685, 1597, 1449, 1376, 1278, 1209, 1076, 1001, 753, 690 cm⁻¹; HRMS $[C_{16}H_{23}O_2]^+$ calcd 247.1698. Found 247.1698 (FAB+).

The stereochemistry of the starting material **21** was assigned by literature methods.² The stereochemistry of the products was determined based on one dimensional difference nOe experiments. The methine protons alpha to oxygen were irradiated. Oualitative enhancement of the nOe was observed only for cis-22.

trans-2-(5-butyl-tetrahydo-furan-2-yl)-1-phenyl-ethanone

(*trans-22*) According to general procedure **B**, vinyl acetal *trans-21* (25) mg, 0.10 mmol), Me₃Al (0.21 mL, 0.40 mmol) and BF₃•OEt₂

(16.0 µL, 0.12 mmol, neat) at – 78 °C produced the product as a 96:4 mixture of isomers Purification by column chromatography on silica gel (10% ethyl (trans/cis). acetate/hexanes) afforded *trans*-22 (21.0 mg, 85 %). ¹H NMR (300 MHz, CDCl₃) δ 7.99-7.95 (m, 2H), 7.59-7.54 (m, 1H), 7.49-7.43 (m, 2H), 4.57-4.48 (m, 1H), 4.02-3.93 (m, 1H), 3.42 (dd, 1H, J = 5.7, 16.2 Hz), 3.04 (dd, 1H, J = 7.8, 16.2 Hz), 2.30-2.16 (m, 1H), 2.11-1.98 (m, 1H), 1.66-1.22 (m, 8H), 0.90 (t, 3H, J = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) 198.6, 137.2, 133.2, 128.7, 128.3, 79.2, 75.0, 45.3, 35.9, 32.6, 32.2, 28.6, 23.1, 14.4; IR (NaCl, neat) 2957, 2930, 2859, 1684, 1449, 1279, 1209, 1064, 1000, 753, 690 cm^{-1} ; HRMS $[C_{16}H_{22}O_{2}]^{+}$ calcd 247.1698. Found 247.1699 (FAB+).

2-(5-butyl-tetrahydo-furan-2-yl)-1-phenyl-ethanone (*cis* and *trans-22*)

According to general procedure A, vinyl acetal cis-21 (12 mg, 0.05 mmol) and BF₃•OEt₂ (8.0 μ L, 0.06 mmol, neat) at – 78 °C produced the product as a 1:2 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexane³s) afforded a mixture of *trans and cis*-22 (11.0 mg, 92 %).

2-(5-butyl-tetrahydo-furan-2-yl)-1-phenyl-ethanone (cis and trans-22)

According to general procedure A, vinyl acetal *trans*-21 (12 mg,

0.05 mmol) and BF₃•OEt₂ (8.0 μ L, 0.06 mmol, neat) at – 78 °C produced the product as a 1:2 mixture of isomers (*trans/cis*). Purification by column chromatography on silica gel (10% ethyl acetate/hexanes) afforded a mixture of *trans and cis*-**22** (10.8 mg, 90 %).

¹H and ¹³C NMR spectra of new compounds are attached:

Spectra for New Compounds:

