ANGEWANDTE

CHEMIE

Herausgegeben von der Gesellschaft Deutscher Chemiker

1994 106/9 Seite 953-1066

EDITORIAL

Das hundertjährige Bestehen feiert im Mai in Berlin die Deutsche Bunsen-Gesellschaft für Physikalische Chemie. Unter die Gratulanten reiht sich auch die Angewandte Chemie, die zum Schwerpunkt dieses Heftes mit dem Aufsatz von John M. Thomas das Thema Katalyse gewählt hat. Die Physikalische Chemie ist nach wie vor durch eine Vielzahl hoch attraktiver Forschungsfelder gekennzeichnet – Hochauflösungsspektroskopie, Elektronentransfer, Cluster, Katalyse und dünne Schichten seien exemplarisch genannt. Die Angewandte Chemie hat durch die Publikation vieler Aufsätze alle Chemiker immer wieder über neue Entwicklungen in der Physikalischen Chemie informiert, und in unseren Zuschriften und Highlights werden wichtige neue Ergebnisse früh präsentiert. Den eingehenden Manuskripten nach zu urteilen, hat die Angewandte Chemie in neuerer Zeit an Attraktivität bei Physikochemikern noch gewonnen, und wir sind froh, dank des erweiterten Umfangs dem Rechnung tragen zu können.

100 Jahre Deutsche Bunsen-Gesellschaft für Physikalische Chemie

TITELBILD :

Die Katalyse – bei uns als Thema schon immer intensiv gepflegt – ist ein so integraler Bestandteil der Geschichte der Physikalischen Chemie, daß es nur zu passend ist, dieses Thema ins Zentrum des "Jubiläumshefts" zu stellen. Seine persönliche Reise durch die immer weiter erkundete Landschaft der reinen und angewandten Katalyse beginnt John M. Thomas auf S. 963 mit einer Entdeckung aus dem Jahre 1823. Damals wurde eine schon dramatisch zu nennende Form der Wassersynthese gefunden, die die Grundlage für die erste kommerzielle Anwendung der Katalyse bildete – das Döbereiner-Feuerzeug. Ein besonders schönes Exemplar zeigt das Titelbild, dessen Vorlage freundlicherweise von Prof. Dr. O. Krätz vom Deutschen Museum in München zur Verfügung gestellt wurde. Die Schilderung der industriellen Innovationen und akademischen Fortschritte auf dem Gebiet der Katalyse seit Döbereiners-Erfindung bietet ein Lesevergnügen für alle Chemiker.

Alles ist interessant, aber nicht alles ist wichtig – diese Erkenntnis gilt es beim Studium der Katalyse zu beherzigen, denn mit den vielen leistungsfähigen Techniken können heute beliebig viele Informationen über Katalysatoren unter Betriebsbedingungen oder über Modellsysteme gewonnen werden. Was aus der Geschichte der Katalyse auch heute noch wissenswert und unterhaltend(!) ist, z.B. daß das katalytische Cracken von einem Motorsportenthusiasten erfunden wurde, das schildert der Aufsatz im ersten Teil. Im zweiten werden neuere Ergebnisse über Festkörperkatalysatoren präsentiert und im Vergleich mit Biokatalysatoren diskutiert.

John M. Thomas* 963 – 989

Wendepunkte der Katalyse

Ist eine bestimmte Reaktion zwischen einem Elektrophil und einem Nucleophil realisierbar? Vor dieser Frage steht man häufig bei der Syntheseplanung. Hier werden Elektrophilie- und Nucleophilieskalen vorgestellt, die hilfreiche Antworten geben können. Vom Nucleophil unabhängige Elektrophilieskalen aufzustellen steht dabei im Widerspruch zum Reaktivitäts-Selektivitäts-Prinzip, das allerdings als Sonderfall erkannt wird.

$$E^{+} \xrightarrow{?} E \xrightarrow{\text{HMR}_{3}} EH$$

H. Mayr*, M. Patz 990-1010

Nucleophilie- und Elektrophilieskalen als Ordnungsprinzipien polarer organischer und metallorganischer Reaktionen

HIGHLIGHTS

Ein Meilenstein der Naturstoffchemie ist die Totalsynthese des zur Zeit vielversprechendsten und synthetisch extrem anspruchsvollen Antikrebsmittels Taxol, die unabhängig voneinander den Arbeitsgruppen von R. A. Holton und K. C. Nicolaou gelang. Mit diesem vorläufigen Höhepunkt dürfte der vermutlich weltweit größte Aufwand zur Totalsynthese einer Einzelverbindung jedoch nicht beendet sein.

Taxol, R1 = Ph, R2 = OAc

L. Wessjohann* 1011-1013

Die ersten Totalsynthesen von Taxol

Das Benzol-Radikalkation ist kein reguläres Sechseck. Diese bisher nur mit PE-Spektren von Benzol, ESR-Spektren von $C_6H_6^+$ in einer Freonmatrix oder der laserinduzierten Fluoreszenz halogensubstituierter Benzole belegte Aussage wurde durch die Ergebnisse von ZEKE-PE-Experimenten von Müller-Dethlefs et al. stark gestützt. Sie sollten bald zu einer Quantifizierung des Jahn-Teller-Effekts und der daraus resultierenden Stabilisierungsenergie bei $C_6H_6^+$ führen.

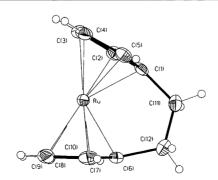
T. A. Miller* 1014-1016

Strukturverzerrungen in reaktiven chemischen Zwischenstufen

Ohne überbrückende Liganden stabil sind die Metall-Metall-Bindungen der heterodinuclearen Komplexe 1 und 2. Die Kombination Metall in hoher Oxidationsstufe/Metall in niedriger Oxidationsstufe führt dazu, daß diese Bindungen stark polarisiert sind. Auf die Reaktivität derartiger Systeme darf man gespannt sein – vor kurzem gelang schon die direkte CO_2 -Insertion in die Zr-Fe- sowie Zr-Ru-Bindung verwandter Komplexe. R = p-Tolyl.

M. Herberhold*,

G.-X. Jin 1016–1018

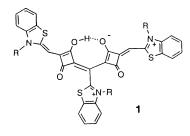

Heterodimetallkomplexe mit unverbrückter, polarer Metall-Metall-Bindung

 $[(tBuN)_3Re-M(CO)_3Cp] \quad \textbf{1}, \ M=Mo$

[HC(SiMe₂NR)₃Ti-M(CO)₂Cp]**2**, M = Fe, Ru

ZUSCHRIFTEN

Nur eine Ethylenbrücke verklammert die Cp₂Ru-Einheit in [2]Ruthenocenophan. Dies führt zu einem hoch gespannten Molekülgerüst (Strukturbild rechts) und macht [2]Ruthenocenophane zu geeigneten Edukten für die thermische Ringöffnungspolymersiation zu Poly(ruthenocenylethylenen).

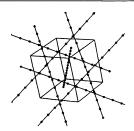


J. M. Nelson, A. J. Lough,

I. Manners* 1019–1021

Synthese und Ringöffnungspolymerisation hochgespannter [2]Ruthenocenophane

In den nahen IR-Bereich verschoben sind die Absorptionsmaxima der Kationen 1. Sie lassen sich ohne Basenzusatz durch Umsetzung von Benzothiazoliumiodiden mit Quadratsäure im Verhältnis 3:2 synthetisieren. Der Chromophor von 1 ist nicht vom Triarylmethan-, sondern vom Polymethintyp. – R = Bu, Pr, Et.

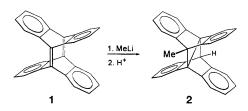

H. Nakazumi*,

K. Natsukawa, K. Nakai,

K. Isagawa 1021 – 1023

Synthese und Struktur neuer kationischer Squarylium-Farbstoffe

Golden glänzende Kristalle des Halbleiters Me₄SbI₈ enthalten freie geordnete Iodketten (Bild rechts), die durch die Koordination von drei Me₄Sb⁺-Ionen an jedes zweite I-Atom der Kette stabilisiert werden. Die Ketten zerbrechen, wenn das Octaiodid gelöst wird. Me₄Sb₈ kann leicht aus Me₄SbI und I₂ hergestellt werden.

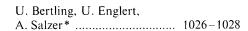

U. Behrens, H. J. Breunig*,

M. Denker,

K. H. Ebert 1023-1024

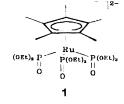
Iodketten in $(Me_4Sb)_3I_8$ und isolierte Triiodid-Ionen in Me_4AsI_3

Abweichend vom üblichen Reaktionsmuster gespannter Olefine und Epoxide setzen sich die Titelverbindungen mit MeLi um. So entsteht beispielsweise in einer nucleophilen, transanularen Homo-1,4-Addition aus I das Inden-Derivat 2; beim 5,6-Epoxid findet eine analoge transanulare Substitution statt.



R. Herges*, H. Neumann,

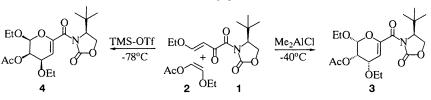
F. Hampel 1024–1026


Transanulare Additionen von Methyllithium an 5,12:6,11-Di[1,2]benzenodibenzo[*a,e*]cycloocten und dessen 5,6-Epoxy-Derivat

Wie lassen sich drei C_s -Liganden und zwei Metallatome noch anordnen? Den klassischen Tripeldeckern A und den Cp-verbrückten Zweikernkomplexen B konnte nun erstmals ein einfacher Sandwichkomplex mit Metallabenzol-Ligand – Strukturtyp C – an die Seite gestellt werden.

Vom Tripeldecker zum Metallabenzol: eine neue Generation von Sandwichkomplexen

Die Stabilisierung hoher Oxidationsstufen in sechsfacher Sauerstoffkoordination gelingt mit dem dianionischen Tripodliganden 1. Mit ihm und dem Methyl-Analogon werden B-, Si-, Ti-, Nb-, Co- und Ru-Komplexe synthetisiert. Nach NMR- und elektrochemischen Untersuchungen hat der Ligand 1 eine geringere Ligandenfeldstärke als Wasser.


U. Kölle*, T. Rüther,

N. Le Narvor, U. Englert,

W. Kläui 1028 – 1030

Ein neuer Sauerstoff-Tripodligand und erste p- und d-Element-Komplexe

Mit exzellenter *endo/exo*-Selektivität und sehr guter induzierter Diastereoselektivität gehen aus chiralen Oxazolidinonen zugängliche Oxabutadiene wie 1 mit dem Enolether 2 in Gegenwart von Lewis-Säuren Hetero-Diels-Alder-Reaktionen ein. Durch Variation der Lewis-Säure kann dabei die Seitendifferenzierung umgekehrt werden. Aus 1 und 2 entsteht mit Me₂AlCl als Initiator fast ausschließlich das *endo-*Produkt 3, mit Trimethylsilyltriflat (TMS-OTf) dagegen das andere *endo-*Produkt 4.

L. F. Tietze*, C. Schneider,

A. Montenbruck 1031 – 1032

Asymmetrisch 1,6-induzierte Hetero-Diels-Alder-Reaktion chiraler Oxabutadiene zur De-novo-Synthese enantiomerenreiner Kohlenhydrate: Umkehr der Seitendifferenzierung durch Variation des Lewis-Säure-Initiators C_{60} , C_{70} ,... **Graphit**, **Diamant**. Erst die akkurate kalorimetrische Bestimmung der Standardbildungsenthalpien von hochreinem C_{60} und C_{70} bestätigt jetzt die nach Rechnungen erwarteten fundamentalen Aussagen zur Stabilität in der Reihe der allotropen Kohlenstofformen. MM3-Kraftfeldrechnungen sagen die experimentellen Werte am besten voraus.

H.-D. Beckhaus, S. Verevkin,

C. Rüchardt*, F. Diederich*,

C. Thilgen, H.-U. ter Meer,

H. Mohn, W. Müller 1033-1035

 C_{70} ist stabiler als C_{60} : experimentelle Bestimmung der Bildungswärme von C_{70}

Durch Methylgruppenübertragung von **2** auf **1** wurde der erste $Zr_3Al_6C_7$ -Cluster **3** erhalten [Gl. (a)]. Sechs Metallatome bilden einen durch Al- und C-Atome abgeschirmten offenen Würfel mit besonders kurzen Zr-Al-Abständen. Zr/Al/C-Verbindungen sind im Zusammenhang mit Ziegler-Natta-Katalysatoren von Interesse.

 $[(C_5Me_5)ZrF_3] + AlMe_3 \longrightarrow [\{(C_5Me_5)Zr\}_3Al_6Me_8(CH)_5(CH_2)_2] + Me_2AlF + CH_4$ (a)

Reaktionen von [(C₅Me₅)ZrF₃] mit AlMe₃ – Synthese und Struktur eines Zirconium-Aluminium-Kohlenstoff-Clusters

Interessante Abfangprodukte mit Phosphanen und Chlortrimethylsilan bildet das neuartige intermediär gebildete Phosphoranylidencarbenoid 1: Mit PPh₃ entsteht das Phosphoniomethanid 2, mit PMe₃ das Dihydrodiphosphet 3 und mit ClSiMe₃ bildet sich das Imino(methylen)phosphoran 4. $R = 2,4,6-tBu_3C_6H_2$, R' = Ph, Me.

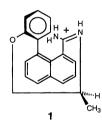
W. Schilbach, V. von der Gönna,

D. Gudat, M. Nieger,

E. Niecke* 1037–1039

Reaktionen eines Iminophosphoranylidencarbenoids

Nicht durch Dekonstruktion sondern durch Rekonstitution konnte die Zusammensetzung des Kornblumen-Pigments Protocyanin geklärt werden. Es ist ein Komplex aus einem Anthocyanin und einem Malonylflavon sowie Eisen(III)- und Magnesium-Ionen, wie aus dem Vergleich der optischen und massenspektrometrischen Befunde von natürlichem und rekonstituiertem Protocyanin hervorgeht.


T. Kondo*, M. Ueda,

H. Tamura, K. Yoshida,

M. Isobe, T. Goto† 1039 – 1040

Zusammensetzung von Protocyanin, einem selbstorganisierten supramolekularen Pigment aus der Kornblume Centaurea cyanus

Als Rezeptoren und Katalysatoren in der Wirt-Gast-Chemie empfehlen sich die Titelverbindungen. Die stereoselektive Ringschlußreaktion von Aminonitrilen ist der Schlüssel zur Synthese dieses neuen Typs axial-chiraler Kationen. Hierbei prägt das Chiralitätszentrum der Seitenkette, das einer α-Aminosäure entstammt, seine absolute Konfiguration dem Biarylgerüst auf. Dieses Prinzip macht eine breite Palette von Zielstrukturen, z. B. 1, zugänglich.

S. Lehr, K. Schütz,

M. Bauch,

M. W. Göbel* 1041 – 1043

Axial-chirale Amidinium-Ionen mit Biarylgerüst: ein neuer Strukturtyp für die Wirt-Gast-Chemie

Farblos und nur bis -40\,^{\circ}\text{C} stabil ist das neue Bromoxid Br₂O₅ 1, das kristallographisch charakterisiert werden konnte. Das Molekül hat eine symmetrische Struktur mit ekliptischer Anordnung der terminalen Sauerstoffatome; in I₂O₅ stehen diese auf Lücke.

D. Leopold,

K. Seppelt * 1043 – 1044

Dibrompentoxid Br₂O₅

Eine bis 150 °C beständige und drei unbeständige Alkylbismut(v)-Verbindungen konnten mit BiMe₄ 'CF₃SO₃ bzw. BiMe₃Cl₂, BiMe₅ und [Li(thf)₄] ⁺ BiMe₆ erstmals hergestellt und röntgenographisch untersucht werden. Die Bauprinzipien der Tetraund Hexamethylverbindung sowie des Dichlorids sind erwartungsgemäß Tetraeder, Oktaeder bzw. trigonale Bipyramide. Für blauviolettes BiMe₅ hätte man jedoch aufgrund der Farbe eine quadratische Pyramide und nicht die trigonale Bipyramide erwartet.

S. Wallenhauer,

K. Seppelt* 1044-1046

Methylbismut(v)-Verbindungen

Die hochdiastereoselektive Bildung ungesättigter α -Aminosäuren 2 durch Umlagerung von 1 gelang nun unter milden Bedingungen und mit sehr guten Ausbeuten über Metallenolate. Die Ireland-Variante über Silylketenacetale wird hierdurch ergänzt und zum Teil in Ausbeute und Selektivität sogar übertroffen. Z = Benzyloxy-carbonyl.

U. Kazmaier* 1046-1047

Synthese ungesättigter Aminosäuren durch [3,3]-sigmatrope Umlagerung chelatverbrückter Glycinesterenolate

Weder eine Helix- noch eine spiralartige β-Turn-Bandstruktur, sondern ein ebenes β-Turn-Band – man könnte von einem β-Turn-Brett sprechen – bildet die Titelverbindung. Peptide mit 2,3-Didehydroaminosäureresten (α . β -Didehydroaminosäureresten) wie Dehydrophenylalanin (Δ Phe) sind als Modellverbindungen für das Studium von Struktur-Wirkungs-Beziehungen von großem Interesse, da die Dehydroaminosäuren die Konformation und den enzymatischen Abbau von Peptiden stark beeinflussen. Aufschlußreich ist der Vergleich der Struktur der Titelverbindung mit der entsprechender Aib-enthaltender Peptide.

Synthese, Kristall- und Molekülstruktur von Boc-Pro- Δ Phe-Ala- Δ Phe-Ala-OMe, einem Pentapeptid mit ungewöhnlicher β -Turn-Bandstruktur

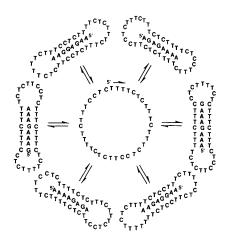
Als Cyclopropenylio-cyclononatetraenid, d.h. in der dipolaren Struktur 1^{\pm} (mit eingeebnetem Neunring), liegt die Titelverbindung 1 vor. Dies gilt laut NMR-Untersuchungen für den gesamten geprüften Bereich von -50bis $+50^{\circ}$ C und selbst in unpolaren Solventien.

S. Chai, M. Neuenschwander* 1050–1052

11,12-Bis(diethylamino)nonatriafulvalen, das erste "aromatische" Nonafulven

Ein nahezu ideal planarer Al_2N_2 -Ring als zentrale Einheit und den niedrigsten Oligomerisationsgrad der Verbindungsklasse weist das dimere Iminoalan 1 auf, das aus $(Cp*Al)_4$ und Me_3SiN_3 entsteht. Daß sich kein Heterocuban bildet, ist auf den sterischen Anspruch der Cp*- und $SiMe_3$ -Gruppen zurückzuführen.

Synthese und Struktur des ersten dimeren Iminoalans mit Al₂N₂-Heterocyclus


Durch eine Veränderung des pH-Werts oder der Cu^{II}-Konzentration läßt sich die durch Selbstorganisation des amphiphilen Gluconamids 1 gebildete Überstruktur beeinflussen. Bei pH 4.5 bilden sich Vesikel, bei pH 8.5 Fasern und hohle Röhren; in Gegenwart von Cu^{II}-Ionen entstehen Helices.

Einstellbare supramolekulare Strukturen eines Gluconamids mit einer Imidazolgruppe

Grignard-Verbindungen und Amine wurden schon 1903 zu "Dimagnesylaminen" RN(MgX)₂ umgesetzt. Jetzt konnte erstmals eine kristalline Verbindung aus einer PhN(MgBr)₂-Lösung in Ether erhalten und durch Röntgenstrukturanalyse charakterisiert werden. Die Titelverbindung hat ein Mg₆N₄-Adamantangerüst; jedes Mg²⁺-Ion ist durch Ethermoleküle solvatisiert, und die vier Br⁻-Ionen befinden sich oberhalb der vier sechsgliedrigen Ringen des Mg₆N₄-Käfigs.

T. Hascall, M. M. Olmstead, P. P. Power* 1056-1057

[{(Et₂O)Mg}₆(NPh)₄Br₄]: eine aus einer Imidobis(magnesiumbromid)-Lösung erhaltene Magnesiumimid-Käfigverbindung Die Erkennung von Sequenzen aus insgesamt 48 Nucleotiden mit nur 35 Nucleotiden gelingt mit dem cyclischen 35mer-Oligonucleotid (rechts im Zentrum des Bilds), dessen Design, Synthese und Bindungseigenschaften beschrieben werden. Die Entwicklung des Oligonucleotid-Makrocyclus zeigt Wege, die Bindungseigenschaften von DNA-Molekülen durch mehr als die Änderung der primären Nucleotidsequenz zu steuern.

E. Rubin, E. T. Kool* 1057–1059

Starke, spezifische Bindung sechs verschiedener DNA-Sequenzen an einen konformativ flexiblen DNA-Makrocyclus

	* Korrespondenzautor
BÜCHER	
Chemistry Imagined: Reflections on Science · R. Hoffmann, V. Torrence	H. Hopf 1061
Dictionary of Trivial Names/Trivialnamen-Handbuch. Band 1-3 · Fachinformationszentrum Chemie	U. Eherhardt 1061
Chemical Vapor Deposition. Principles and Applications • M. L. Hitchman, K. F. Jensen	R. A. Fischer 1062
Unraveling DNA · M. D. Frank-Kamenetskii	S. Hoffmann 1063
Solid State Chemistry. Synthesis, Structure, and Properties of Selected Oxides and Sulfides · A. Wold, K. Dwight	W. Schnick 1064
Metal Complexes in Cancer Chemotherapy · B. K. Keppler	B. Lippert 1064
Antibiotics and Antiviral Compounds. Chemical Synthesis and Modification · K. Krohn, H. A. Kirst, H. Maag	J. Rohr 1065
Autorenregister und Konkordanz A-83	Neue Produkte A-69
Vorschau A-84	Wer? Was? Wo? A-75

Englische Fassungen aller Aufsätze, Zuschriften und Highlights dieses Heftes erscheinen im ersten Maiheft der *Angewandten Chemie International Edition in English.* Entsprechende Seitenzahlen können einer Konkordanz im zweiten Maiheft der *Angewandten Chemie* entnommen werden.

Nucleophilie- und Elektrophilieskalen als Ordnungsprinzipien polarer organischer und metallorganischer Reaktionen

Herbert Mayr* und Matthias Patz

Entgegen landläufiger Meinung ist es für zahlreiche Reaktionen der Organischen und Metallorganischen Chemie möglich, Nucleophilie- und Elektrophilieparameter zu definieren, die nicht vom jeweiligen Reaktionspartner abhängig sind. Dieses Phänomen, das Anfang der siebziger Jahre von Ritchie bei Reaktionen hochstabilisierter Carbenium- und Diazonium-

Ionen mit n-Nucleophilen entdeckt wurde, tritt auch bei Reaktionen von Carbenium-Ionen mit aliphatischen und aromatischen π-Elektronensystemen sowie bei Hydridübertragungen auf. Mit Hilfe der hier vorgestellten Nucleophilie- und Elektrophilieskalen, die über jeweils 18 Zehnerpotenzen reichen, gelingt die Voraussage, ob und wie rasch eine bestimm-

te C-C-Verknüpfung, eine ionische Reduktion oder eine Azokupplung abläuft. Eine Anknüpfung an die Reaktivitätsskalen von Ritchie und Sweigart/Kane-Maguire macht eine einheitliche Behandlung einer großen Zahl polarer Reaktionen möglich.

1. Einleitung

Mit Lewis' Valenzelektronentheorie^[1] und der allgemeinen Säure-Base-Theorie von Lowry und Brønsted^[2] wurde Mitte der zwanziger Jahre der Grundstein für unser heutiges Verständnis vom Ablauf organisch-chemischer Reaktionen gelegt. Auf dieser Basis führte Ingold in den dreißiger Jahren die Begriffe "Elektrophile" für elektronensuchende Teilchen und "Nucleophile" für kernsuchende Teilchen ein^[3].

Über den ersten systematischen Versuch, den kinetischen Term Nucleophilie zu quantifizieren, berichteten 1953 Swain und Scott, die die Geschwindigkeiten von S_N 2-Reaktionen untersuchten Sie definierten Nucleophilie n als inhärente Stoffeigenschaft durch Gleichung (a), wobei s die elektrophilspezifische Empfindlichkeit der Geschwindigkeitskonstanten gegenüber Variation des Nucleophils bedeutet. Als Referenzreaktion (s=1) dienten die S_N 2-Reaktionen von Nucleophilen mit CH $_3$ Br in Wasser.

$$\lg\left(k/k_{\rm H_2O}\right) = sn\tag{a}$$

Ein Jahr später schlug Edwards eine Vier-Parameter-Gleichung vor, in der Basizität und Polarisierbarkeit des Nucleophils je nach Elektrophil unterschiedlich gewichtet wurden^[5], doch fand auch diese Gleichung keine breite Anwendung. Parker wies auf den großen Einfluß der Solvatation hin und berichtete, daß bei

[*] Prof. Dr. H. Mayr, Dipl.-Chem. M. Patz Institut f
ür Organische Chemie der Technischen Hochschule Petersenstraße 22, D-64287 Darmstadt Telefax: Int. + 6151/16-5591 S_N2-Reaktionen die Nucleophilie bis auf das 10⁸ fache gesteigert werden kann, wenn man von einem Lösungsmittel, das H-Brükken auszubilden vermag, zu einem dipolar aprotischen Lösungsmittel übergeht^[6]. Als Bunnett 1963 Bilanz zog, führte er 17 Faktoren an, die bei einer quantitativen Beschreibung der Nucleophilie zu berücksichtigen sind^[7]. Da die Reaktivitäten von Nucleophilen gegenüber *trans*-[Pt(py)₂Cl₂] mit keinem der damals bekannten Sätze von Nucleophilieparametern korrelierten, zogen Pearson et al. den Schluß, daß es derzeit (1968) nicht möglich sei, Geschwindigkeiten nucleophiler Substitutionsreaktionen quantitativ vorauszusagen, sofern Substrate mit stark unterschiedlichen Eigenschaften eingesetzt werden^[8].

2. Konstante Selektivitätsbeziehungen

Angesichts der geschilderten Komplexität erregten 1972 Ritchies Befunde große Aufmerksamkeit, wonach bei Reaktionen von Carbokationen und Diazonium-Ionen mit Nucleophilen ein bestimmtes Nucleophilsystem durch einen konstanten N_+ -Parameter charakterisiert werden kann, der nicht von der Art des Elektrophils abhängt [Gl. (b)]^[9]. Dieser Zusammenhang (Abb. 1)

$$\lg\left(k/k_{\rm o}\right) = N_{+} \tag{b}$$

wird auch als "konstante Selektivitätsbeziehung" bezeichnet, da die relative Reaktionsgeschwindigkeit zweier Nucleophile (= Selektivität) nicht von der absoluten Reaktionsgeschwindigkeit des Elektrophils abhängt. Umgekehrt ist die relative Reaktivität zweier Elektrophile (= Selektivität) von der Stärke des Nucleo-

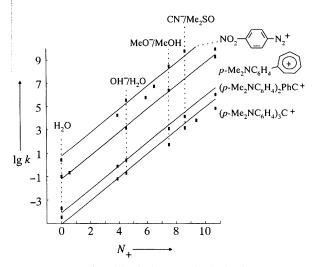


Abb. 1. Konstante Selektivitätsbeziehung nach Ritchie [9].

phils unabhängig. Erst beim Erreichen der Diffusionsgrenze werden Abweichungen beobachtet.

Zwar wurde später festgestellt, daß die Beziehung (b) nicht streng gültig ist und daß bessere Korrelationen erhalten werden, wenn verschiedene Gruppen von Elektrophilen separat behandelt werden^[10], doch sind angesichts der nahezu 13 Zehnerpotenzen umfassenden Nucleophilieskala diese Abweichungen in erster Näherung vernachlässigbar. Der Befund, daß auch ungeladene Elektrophile, wie Ester^[11], acceptorsubstituierte Ketone^[12] und 2,4-Dinitrohalogenbenzole^[13] dieser Beziehung folgen, erhöht die Bedeutung von Gleichung (b) erheblich.

Ähnliche Korrelationen beobachteten Kane-Maguire, Sweigart et al. bei nucleophilen Additionen an metallkoordinierte π -Elektronensysteme^[14]. Wie Abbildung 2 zeigt, ist die relative Reaktivität der Metallkomplexe [Mn(CO)₃(C₇H₈)]⁺, [Fe(CO)₃-(2-MeOC₆H₆)]⁺ und [Fe(Cp)(C₇H₈)]⁺ von der absoluten Reaktionsgeschwindigkeit der Referenznucleophile unabhängig^[14]. Da die relativen Reaktivitäten von Phosphor- und Stickstoff-Nucleophilen gegenüber freien Carbokationen und metall-

koordinierten π -Elektronensystemen gleich sind^[15], kann die N_{Fe} -Skala von Kane-Maguire und Sweigart als repräsentativ für beide Klassen von Elektrophilen angesehen werden

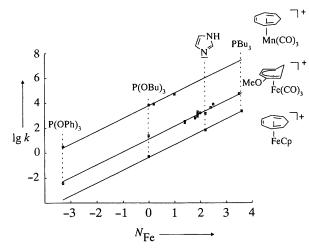


Abb. 2. Konstante Selektivitätsbeziehung nach Kane-Maguire und Sweigart [14].

Konstante Selektivitätsbeziehungen beobachteten auch wir bei der Addition von Diarylcarbenium-Ionen (Abkürzungen siehe Schema 1) an endständige Doppelbindungen, wobei die neue C-C-Bindung im geschwindigkeitsbestimmenden Schritt geknüpft wird [16]. Die relative Reaktivität der π -Nucleophile istvon der Elektrophilie der Carbenium-Ionen unabhängig, ob-

$$MeO$$
—: An CH_3 —: Tol PhO —: $PhOP$

Schema 1. Im Beitrag verwendete Abkürzungen für Arylreste.

Herbert Mayr, geboren 1947 in Weilheim, Oberbayern, studierte Chemie an der Universität München und promovierte dort 1974 bei R. Huisgen. Nach einer einjährigen Postdoktoranden-Tätigkeit bei G. A. Olah an der Case-Western-Reserve-University in Cleveland/Ohio ging er 1976 zu P. von R. Schleyer in Erlangen, wo er sich 1980 habilitierte. Von 1984 bis 1991 leitete er das Institut für Chemie der Medizinischen Universität zu Lübeck. 1991 übernahm er eine Professur am Institut für Organische Chemie der Technischen Hochschule Darmstadt. Seine Arbeitsgebiete sind Synthesen über carbokationische Zwischenstufen, Kinetik von Ion-Molekül-Reaktionen, lineare Freie-Energie-Beziehungen, carbokationische Telomerisierungen und ungewöhnliche Cycloadditionen.

H. Mayr

M. Patz

Matthias Patz, geboren 1965 in Kiel, studierte, unterbrochen von einem halbjährigen Studienaufenthalt an der University of Southampton, an der Universität Hamburg Chemie. 1990 fertigte er am Institut für Anorganische und Angewandte Chemie seine Diplomarbeit über Anioneneffekte in Kalium-Kronenether-Komplexen an. Anfang 1991 begann er bei H. Mayr in Lübeck seine Promotion und wechselte mit ihm Ende 1991 an die Technische Hochschule Darmstadt.

wohl die absoluten Reaktionsgeschwindigkeiten um mehr als fünf Zehnerpotenzen variieren (Abb. 3).

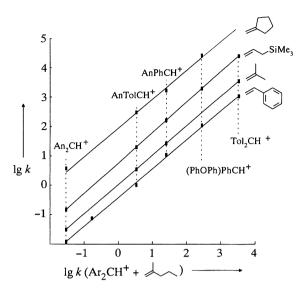
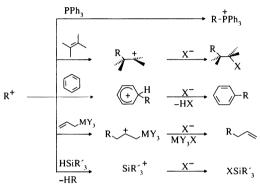


Abb. 3. Konstante Selektivitätsbeziehung bei Reaktionen von Benzhydryl-Kationen mit Alkenen (CH_2Cl_2 , -70 °C) [16].


Zieht man die Ergebnisse von Konkurrenzexperimenten hinzu^[17], läßt sich zeigen, daß bei den Reaktionen von Verbindungen mit endständigen Doppelbindungen mit Diarylcarbenium-Ionen die konstante Selektivitätsbeziehung über einen Reaktivitätsbereich von mindestens acht Zehnerpotenzen gültig ist^[16]. Diarylcarbenium-Ionen wurden daher als Referenzelektrophile verwendet, um eine Nucleophilieskala für π -Elektronensysteme zu erstellen. Da die bisher verwendeten Diarylcarbenium-Ionen vom Bis(p-chlor)- bis zum Bis(p-dimethylamino)-substituierten Diphenylcarbenium-Ion einen Reaktivitätsbereich von mehr als 13 Zehnerpotenzen abdecken, wird es möglich, Nucleophile stark unterschiedlicher Reaktivität zu vergleichen, während die sterischen Gegebenheiten des elektrophilen Zentrums exakt gleich gehalten werden.

3. Geschwindigkeiten von Elektrophil-Nucleophil-Kombinationen

3.1. Bestimmungsmethoden

Zur Bestimmung der meisten hier wiedergegebenen Geschwindigkeitskonstanten wurden Lösungen stabiler Carbenium-Ionen (oder anderer Elektrophile) erzeugt und die Konzentrationsabnahme nach Zusatz des Nucleophils verfolgt. Bei n-Nucleophilen handelt es sich um einen einzigen Reaktionsschritt (Schema 2, 1. Reaktion), dem sich manchmal noch ein Deprotonierungsschritt anschließt. Der Angriff von Carbenium-Ionen auf Alkene, Arene, Allylsilane, -germane, -stannane und Hydrosilane ist dagegen der erste Schritt einer mehrstufigen Reaktionskaskade (Schema 2), und die angegebenen Geschwindigkeitskonstanten beziehen sich auf den ersten Schritt dieser Folge, die

meist geschwindigkeitsbestimmende Bindungsbildung zwischen Elektrophil und Nucleophil ("Elektrophil-Nucleophil-Kombination"). Der zunächst überraschende Befund, daß sich bei diesen Reaktionen freie und mit dem Gegenion gepaarte Carbenium-Ionen in ihrer Reaktionsgeschwindigkeit nicht unterscheiden, wurde darauf zurückgeführt^[18], daß die Gibbs-Energie gepaarter Carbokationen um einen konstanten Betrag günstiger als die der freien Ionen ist, in CH₂Cl₂ zum Beispiel um ca. 14 kJ mol⁻¹. Da dieser Energieunterschied auch für die aktivierten Komplexe anzunehmen ist, ergibt sich für freie und gepaarte Carbokationen die gleiche Reaktionsgeschwindigkeit^[18]. Der Grund für die abweichende Situation in der Chemie der Carbanionen wurde diskutiert^[18b].

Schema 2. M = Si, Ge, Sn.

Geschwindigkeitskonstanten $k < 10^4 \text{ L} \, \text{mol}^{-1} \, \text{s}^{-1}$ wurden von uns konduktometrisch oder photometrisch unter Verwendung von Faseroptik bestimmt, so daß problemlos bei tiefen Temperaturen und unter Inergasatmosphäre gearbeitet werden konnte^[19]. In den Arbeitskreisen von Ritchie^[20] und Kane-Maguire^[21] wurden meist Stopped-flow-Techniken (UV/VIS) eingesetzt, mit denen auch schnellere Reaktionen untersucht werden können. Bei Carbonylkomplexen wurde auch die IR-Spektroskopie verwendet^[21]. Bis an die Diffusionsgrenze drang man mit Laserpuls-Methoden vor, wobei die Carbenium-Ionen durch 20ns-Laserpulse in Gegenwart von Nucleophilen erzeugt wurden^[22]. Die Zerfallsgeschwindigkeiten der so erzeugten Carbenium-Ionen in Abhängigkeit von der Nucleophilkonzentration liefern die Geschwindigkeitskonstanten der Elektrophil-Nucleophil-Kombinationen.

Relative Reaktionsgeschwindigkeiten von Alkenen und Allylsilanen wurden zusätzlich durch Konkurrenzexperimente bestimmt, indem Carbenium-Ionen in Gegenwart eines Paars von π -Nucleophilen in situ erzeugt wurden [17,23]. Die aus den Produktverhältnissen ermittelten relativen Geschwindigkeitskonstanten stimmen mit den Ergebnissen von Messungen absoluter Geschwindigkeiten überein [18]. Bei der von Jencks et al. entwikkelten Methode der Azid-Uhr [24,63] wird genutzt, daß viele Carbenium-Ionen mit N_3^- diffusionskontrolliert reagieren ($k=5\times10^9$ L mol $^{-1}$ s $^{-1}$) [25]. Daher können durch Experimente, bei denen Carbenium-Ionen in wäßrigen Azidlösungen in situ erzeugt werden, aus den Verhältnissen der Abfangprodukte auch absolute Geschwindigkeitskonstanten bestimmt werden. Da die so bestimmten Konkurrenzkonstanten teilweise von der Azid-

AUFSÄTZE

konzentration abhängig sind, sind die mit der Azid-Uhr ermittelten Geschwindigkeitskonstanten nicht immer verläßlich^[26].

Für die im Mittelpunkt dieser Übersicht stehenden π-Nucleophile haben wir gezeigt, daß Messungen absoluter Geschwindigkeitskonstanten mit Salzen stabiler Carbenium-Ionen und laserflashphotolytisch erzeugter Carbenium-Ionen übereinstimmende Resultate liefern^[27], die durch Produktstudien bei Konkurrenzexperimenten bestätigt werden. Für diese Nucleophile liegen somit drei voneinander unabhängige Datensätze vor, deren Übereinstimmung die Elektrophil-Nucleophil-Kombination als geschwindigkeitsbestimmenden Schritt belegt.

3.2. Reaktionsgeschwindigkeit als Funktion von Nucleophil, Elektrophil, Temperatur und Lösungsmittel

Die hier beschriebenen Geschwindigkeitskonstanten von Elektrophil-Nucleophil-Kombinationen sind in erster Linie von den vier in der Überschrift genannten Faktoren abhängig. Eine strenge Separation dieser vier Parameter ist nicht möglich. Insbesondere die Werte der Nucleophilie- und Elektrophilieparameter sind häufig von der Natur des Lösungsmittels abhängig. Für die Reaktionen von Carbokationen mit ungeladenen Nucleophilen wie Alkenen^[19], neutralen Hydriddonoren^[28] und Phosphanen[14] wurde gezeigt, daß die Reaktionsgeschwindigkeit durch das Lösungsmittel kaum beeinflußt wird (Tabelle 1), da im geschwindigkeitsbestimmenden Schritt weder Ladungen "erzeugt" noch "vernichtet" werden. Selbst der Wechsel vom wenig polaren Chloroform ($\varepsilon = 4.81$) zu Nitromethan ($\varepsilon = 35.94$) erhöht die Geschwindigkeit der Reaktion des Bis(p-methoxyphenyl)carbenium-Ions An₂CH⁺ mit 2-Methyl-1-penten nur um den Faktor 4.8. Da sich die Polaritäten der bei Elektrophil-Nucleophil-Reaktionen eingesetzten Lösungsmittel in der Regel zwischen diesen beiden Extremen bewegen, kann der Lösungsmitteleinfluß auf die Geschwindigkeit solcher Reaktionen in erster Näherung vernachlässigt werden.

Tabelle 1. Der Einfluß des Lösungsmittels auf die Geschwindigkeit der Reaktionen von Carbenium-Ionen mit ungeladenen Nucleophilen.

Elektrophil $(T[^{\circ}C])$	Nucleophil	Lösungsmittel	$ [L \text{mol}^{-1} \text{s}^{-1}] $	Lit.
An ₂ CH ⁺	2-Methyl-1-	CH ₃ NO ₂	2.63	[19]
(-30)	penten	(CH ₂ Cl) ₂	0.958	[19]
		CH,Cl,	0.632	[19]
		CHCI,	0.543	[19]
AnPhCH *	HSiMe ₂ Ph	CH ₃ NO ₂	71.4	[28]
(-20)	-	CH ₃ CN	67.5	[28]
		CH,Cl,	47.7	[28]
$[Fe(CO)_3(C_6H)]^+$	PTol,	CH ₃ NO ₃	4.1×10^{4}	[21]
(20)	.,	(CH ₃),CO	2.8×10^{4}	[21]
, ,	Pyrrol	CH ₃ NO ₂ CH ₃ CN	0.89 [a] 1.34 [a]	[37] [37]

[a] Bei 45 °C.

Eine starke Abhängigkeit der Reaktionsgeschwindigkeit vom Lösungsmittel zeigt z.B. der Vergleich der Reaktivitäten von n-Nucleophilen in protischen und aprotischen Solventien (vgl. Abschnitt 1). Bei Azokupplungen wiederum wurde ein Zusammenhang zwischen der Reaktionsgeschwindigkeit und der Do-

norzahl des Solvens^[73a] beobachtet^[73b]. In solchen Fällen ist es zweckmäßig, Nucleophilie oder Elektrophilie in bezug auf ein bestimmtes Lösungsmittel zu definieren (vgl. Abschnitt 3.3.3).

3.3. Nucleophile

3.3.1. Einleitung

Nucleophile lassen sich hinsichtlich der Art der Elektronen klassifizieren, die für die neue Bindung mit dem Elektrophil zur Verfügung gestellt werden. Man kann somit in π - (z.B. Alkene), n- (z.B. Phosphane) und σ -Nucleophile (z.B. Hydride) unterteilen. Da es leichter ist, innerhalb dieser Gruppen Unterschiede und Gemeinsamkeiten zu diskutieren, werden diese drei Nucleophilklassen zunächst getrennt behandelt.

3.3.2. Reaktivität von π-Nucleophilen

3.3.2.1. Alkene, Diene und Alkine

Abbildung 4, in der repräsentative Verbindungen aus Tabelle 2 aufgeführt sind, zeigt, daß die alkylsubstituierten Ethylene in erster Linie danach zu unterscheiden sind, ob sie beim elektrophilen Angriff sekundäre oder tertiäre Carbenium-Ionen ergeben. Isobuten ist 25 000mal reaktiver als Propen, dessen Re-

Abb. 4. Geschwindigkeitskonstanten für die Reaktionen von AnPhCH $^+$ mit ungesättigten Kohlenwasserstoffen (CH $_2$ Cl $_1$, $-70\,^{\circ}$ C).

aktivität sich nur wenig von der der *cis-trans*-isomeren 2-Butene unterscheidet. 2,3,3-Trimethyl-1-buten ist wegen der sterisch anspruchsvollen *tert*-Butylgruppe etwa 20mal weniger reaktiv als Isobuten und ähnlich reaktiv wie Norbornen, das entsprechend der S_N1-Reaktivität von 2-Norbornyl-Derivaten zwischen sekundären und tertiären Carbenium-Ionen-Vorläufern steht.

Unerwartet große Reaktivitätsunterschiede bestehen zwischen den verschiedenen Methylencycloalkanen (Tabelle 2)^[30e]. Wir fanden eine Korrelation zwischen den Geschwindigkeiten der Carbenium-Ionenaddition an Methylencycloalkane und den Sol-

Tabelle 2. Geschwindigkeitskonstanten und Aktivierungsparameter für die Reaktion von AnPhCH+ mit Alkenen, Alkinen und Dienen (CH₂Cl₂, -70 C) [30].

Nucleophil	k [L mol ⁻¹ s ⁻¹]	ΔH^{\pm} [kJ mol ⁻¹]	ΔS * [c] [J mol - 1 K - 1]	s [a]	N [a]
Alkylsubstitu	ierte Ethylene				
	9.39×10^{-4}	32.6 ± 0.2	-139 ± 1	(0.98)	(-2.36)
~~~	$1.85 \times 10^{-3}$ [b]		(-130)	0.98	-2.02
	$1.01 \times 10^{-3}$	$31.4 \pm 0.4$	$-145 \pm 2$	(1.20)	(-2.39)
<b>\</b>	$1.26 \times 10^{-3}$	$29.9 \pm 0.5$	$-150 \pm 2$	(1.20)	(-2.38)
	$2.33\times10^{1}$	$21.1 \pm 0.4$	$-112 \pm 2$	1.02	1.07
	$1.84\times10^{1}$	$21.4 \pm 0.2$	-112 ±1	(1.00)	(1.05)
1	6.08		(-115)	(1.00)	(0.67)
1	1.21	$24.4 \pm 0.5$	$-120 \pm 3$	(1.00)	(0.10)
	$2.58\times10^{1}$	19.5 ± 1.2	$-119 \pm 6$	1.00	1.02
	$2.86\times10^{1}$	$18.6 \pm 0.3$	$-122 \pm 1$	(1.00)	(1.03)
	$2.47\times10^{2}$	$7.5 \pm 0.1$	$-159 \pm 0.3$	1.16	0.71
	5.62	$8.0 \pm 0.2$	$-188 \pm 1$	1.44	-0.96
Methylencycl	oalkane				
$=$ $CH_2)_{n-1}$					
n=3	0.12		(-110)	(1.00)	(-0.44)
n=4	$4.01 \times 10^{1}$	$20.6 \pm 0.3$	$-110 \pm 1$	(1.00)	(1.30)
n = 5 $n = 6$	$1.72 \times 10^3$ $4.69 \times 10^1$	$11.6 \pm 0.4$ $19.8 \pm 0.1$	$-123 \pm 2$ $-112 \pm 1$	1.02 (1.00)	2.31 (1.34)
n = 7	$4.25 \times 10^{2}$	$14.2 \pm 0.1$	$-121 \pm 1$	(1.00)	(1.87)
n = 8	$5.09 \times 10^{3}$	$11.2 \pm 0.3$	$-116 \pm 2$	(1.00)	(2.66)
n = 9	$1.60 \times 10^{3}$	$10.7 \pm 0.1$	$-128 \pm 1$	(1.00)	(2.12)
n = 10	$2.26 \times 10^{3}$	$11.7 \pm 0.3$	$-120 \pm 1$	(1.00)	(2.36)
n = 11	$7.83 \times 10^{2}$	$12.0 \pm 0.2$	$-127 \pm 1$	(1.00)	(1.94)
n = 12 $n = 15$	$1.33 \times 10^{2}$	$12.5 \pm 0.3$	$-139 \pm 1$	(1.00)	(1.21)
n = 15 Cyclische Alk	8.84 × 10 ¹	$16.7 \pm 0.1$	$-122 \pm 1$	(1.00)	(1.37)
	$7.0 \times 10^{-3}$		(-150)	(1.00)	(-1.93)
	$5.2 \times 10^{2}$		(-130)	(1.00)	(1.76)
	3.2 × 10		(150)	(1.00)	(1.70)
	8.7	$17.7 \pm 0.2$	$-136 \pm 1$	1.10	0.20
	$7.82 \times 10^{-1}$	$23.9 \pm 0.3$	-126 ±1	(1.00)	(-0.12)
Konjugierte [	Diene				
//	$1.93 \times 10^{-2}$		(-120)	(1.00)	(-1.15)
	$4.62 \times 10^{1}$	$22.4 \pm 0.3$	$-99 \pm 2$	(1.00)	(1.55)
	3.06		(-100)	(1.00)	(0.70)
	1.56 × 10 ¹	$23.0 \pm 0.4$	$-106 \pm 0.2$	0.98	1.12
	$2.83 \times 10^{1}$		(-100)	(1.00)	(1.37)
<u></u>	$1.82\times10^2$	$15.1\pm0.6$	$-124 \pm 3$	(1.10)	(1.22)
	$1.74\times10^3$		(-120)	(1.10)	(1.89)
	$2.75\times10^{1}$	$18.5 \pm 0.7$	$-123 \pm 4$	(1.10)	(0.72)
	3.04	22.1 ± 0.7	$-123 \pm 4$	(1.10)	(0.13)
	$3.26 \times 10^{-1}$		(-120)	(1.10)	(-0.46)

Tabelle 2. (Fortsetzung)

Nucleophil	k [L mol ⁻¹ s ⁻¹ ]	$\Delta H^*$ [kJ mol ⁻¹ ]	$\Delta S^*$ [c] [J mol ⁻¹ K ⁻¹ ]	s [a]	N [a]
Nichtkonjugi	erte Diene				
(CH 3)					
n=1	3.42	$24.8 \pm 0.5$	$-110 \pm 2$	(1.00)	(0.55)
n = 2	$1.51 \times 10^{1}$		(-100)	(1.00)	(1.18)
n = 3	$3.92 \times 10^{1}$	$26.0 \pm 0.1$	$-83 \pm 1$	(1.00)	(1.75)
n = 4	$5.35 \times 10^{1}$	$22.8 \pm 0.5$	$-97 \pm 2$	(1.00)	(1.59)
Styrole					
R =	R				
Н	$1.09 \times 10^{1}$	$19.3 \pm 0.3$	$-127 \pm 1$	0.97	0.78
p-F	7.38 [b]		(-120)	(1.00)	(0.64)
p-Cl	1.7 [b]		( 120)	(1.00)	(0.20)
p-Br	1.7 [b]		(-120)	(1.00)	(0.20)
m-NO ₂	$2.03 \times 10^{-3}$ [b]		(-120)	(1.00)	(-1.82)
Ph	$1.45\times10^3$		( – 110)	(1.00)	(2.39)
√∕_Ph	3.87	$15.5 \pm 0.4$	$-154 \pm 2$	1.20	-0.47
Ph	8.29 × 10 ⁻²	26.1 ± 0.3	- 134 ± 1	(1.20)	(-1.12)
Sonstige Alke	ne				
Ph	1.13	27.2 ± 1.0	$-107 \pm 5$	(1.00)	(0.28)
$\overline{}$	$5.65 \times 10^{3}$			(1.00)	(2.80)
Alkine					
//^^	$3.03 \times 10^{-4}$ [b]		(-105)	(0.70)	(-2.19)
//Ph	$7.2 \times 10^{-2}$		( – 105)	0.70	0.27
Ph	0.97 [b]		(110)	(0.80)	(1.11)

[a] Die Nucleophilieparameter N und s werden in Abschnitt 4.2 eingeführt (in Klammern Näherungswerte). [b] Aus relativen Reaktivitäten gegenüber Tol₂CH⁺ [17, 30d]. [c] In Klammern Schätzwerte, siehe Abschnitt 3.5.

volysegeschwindigkeiten der entsprechenden Cycloalkylderivate bei  $S_N$ 1-Reaktionen, die früher durch die Spannungsänderung bei der Umhybridisierung ( $sp^3 \rightarrow sp^2$ ) im geschwindigkeitsbestimmenden Schritt erklärt worden  $sind^{\{31\}}$ . Da bei den hier diskutierten Additionsreaktionen im geschwindigkeitsbestimmenden Schritt keines der Ringkohlenstoffatome den Hybridisierungszustand ändert, wurde die (I)-Spannungstheorie zur Solvolyse von Cycloalkylverbindungen von Brown^{32}} von uns in Frage gestellt^{30c}.

Die Reaktivität konjugierter Diene und Styrole (Tabelle 2) spiegelt ebenfalls die Stabilität der beim elektrophilen Angriff entstehenden Allyl- und Benzyl-Kationen relativ zu Alkylcarbenium-Ionen wider, wie sie aus Solvolysedaten abgeleitet worden ist^[30a]. Bei nichtkonjugierten Dienen führte die zusätzliche Doppelbindung stets zu einer Verringerung der Nucleophilie, und es wurden keine Beispiele für eine nucleophile Unterstützung der Reaktion durch die zweite π-Bindung gefunden^[30b].

Während die Nucleophilie der bisher studierten C-C-Doppelbindungssysteme mit den S_N1-Reaktivitäten der Additionsprodukte korreliert, reagieren die Dreifachbindungssysteme 1-Hexin und Phenylacetylen viel schneller als man aus den Solvolysegeschwindigkeiten der entsprechenden Vinylchloride erwarten würde^[30d]. Der größere Energiegewinn beim Übergang einer C-C-Dreifachbindung in eine C-C-Doppelbindung und eine C-

**AUFSÄTZE** 

C-Einfachbindung (verglichen mit dem Übergang  $C=C \rightarrow 2 C-C$ ) hat zur Folge, daß Alkine nur unwesentlich langsamer von Carbenium-Ionen angegriffen werden als entsprechend substituierte Alkene, obwohl die aus Alkinen gebildeten Vinyl-Kationen energiereichere Zwischenstufen sind. Nur gegenüber verbrückenden Elektrophilen (z.B. Halogenen) zeigen Alkine eine deutlich geringere Nucleophilie als Alkene^[33].

#### 3.3.2.2. Allylsilane, -germane, -stannane

In Abbildung 5 sind die Reaktivitäten von ausgewählten Allylelementverbindungen (Tabelle 3) und Alkenen (Tabelle 2) aufgeführt: Der Ersatz eines Allylwasserstoffatoms durch eine Tri-

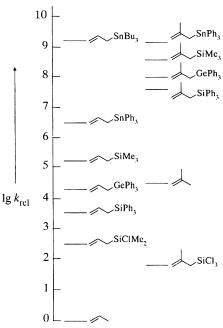



Abb. 5. Reaktivitäten von Allylsilanen, -germanen und stannanen relativ zu Propen (links) und Isobuten (rechts) (Bezugssysteme An₂CH⁺, AnPhCH⁺, CH₂Cl₂, – 70 C) [35].

methylsilylgruppe steigert die Nucleophilie der Doppelbindung um den Faktor 200 000. Eine Trimethylsilylgruppe in  $\beta$ -Stellung zum intermediären Carbenium-Zentrum erhöht die Reaktivität somit stärker als eine Methylgruppe in  $\alpha$ -Stellung (vgl. Allyltrimethylsilan und Isobuten). In der Reihe der Allyltriphenylelementverbindungen nimmt die Nucleophilie gemäß Si < Ge  $\le$  Sn zu. Die geringe Reaktionsgeschwindigkeit bei vielen Lewis-Säurekatalysierten Umsetzungen von Allylstannanen ist daher auf die rasche Reaktion der Allylstannane mit der Lewis-Säure und die geringe Nucleophilie der dabei gebildeten Zwischenprodukte zurückzuführen [34].

Der große Einfluß der Substituenten an Silicium wird beim Vergleich von Allyltrimethyl- und Allyltriphenylsilan deutlich: Der Unterschied der induktiven Effekte von Methyl und Phenyl bewirkt, daß die Triphenylsilylverbindung um den Faktor 58 weniger reaktiv ist. Wird eine Methylgruppe an Silicium durch Chlor ersetzt, hat dies einen noch größeren Reaktivitätsunterschied zur Folge: Allylchlordimethylsilan ist um fast drei Zeh-

Tabelle 3. Geschwindigkeitskonstanten für die Reaktionen von Allylsilicium-, -germanium- und -zinnverbindungen mit Diarylcarbenium-Ionen (CH₂Cl₂, -70°C) [35].

Nucleophil	k mit AnPhCH + [Lmol ⁻¹ s ⁻¹ ]	k mit An ₂ CH ⁺ [Lmol ⁻¹ s ⁻¹ ]	s [a]	N [a]
SiMe ₂ Cl	$2.76 \times 10^{-1}$		1.07	- 0.45
SiPh ₃	3.21		0.92	0.46
SiMe ₂ Ph	$3.87\times10^{1}$		(1.00)	(1.14) [b]
SiMe ₃	$1.87\times10^{2}$	$2.81 \times 10^{-1}$	1.01	1.62
SiMe ₂ tBu	$2.04 \times 10^{2}$		(1.00)	(1.65) [b]
SiEt ₃	$3.13\times10^2$		(1.00)	(1.77) [b]
√SiiPr ₃	$4.39 \times 10^{2}$		(1.00)	(1.87) [b]
SinBu ₃	$5.08\times10^2$		(1.00)	(1.92) [b]
SinHex ₃	$5.42\times10^2$		(1.00)	(1.94) [b]
sicl,	$6.8 \times 10^{-2}$		(1.00)	(-0.77) [b]
SiPh ₃	$1.91\times10^4$	$5.55\times10^{1}$	0.92	3.68
SiMe ₃	$4.19\times10^3$	$4.89\times10^2$	0.89 (1.10)	4.90 (1.99) [c]
SiMe,	$1.66 \times 10^{3}$		(1.10)	(1.73) [c]
SiMe ₃	$1.52\times10^3$		1.25	0.84
SiMe ₃	$1.30\times10^3$		0.90	2.50
SinHex ₃	$2.81\times10^3$		(0.90)	(2.93)
SiEt,		$1.3 \times 10^3$	(1.10)	(3.74) [c]
GePh ₃	$1.79\times10^{1}$		(1.00)	(1.07) [d]
GePh ₃	$\approx 2.5 \times 10^4$	$1.38\times10^{2}$	0.80	4.80
SnPh ₃	$5.18 \times 10^{3}$	$1.01\times10^{1}$	0.89	3.29
SnnBu ₃		$5.07 \times 10^{3}$	0.85	5.72
SnPh ₃		$2.40\times10^3$	0.82	5.63

[a] Nucleophilieparameter N und s werden in Abschnitt 4.2 eingeführt (in Klammern Näherungswerte). [b] Mit einer angenommenen Aktivierungsentropie von  $-120 \,\mathrm{J\,mol^{-1}\,K^{-1}}$  abgeschätzt. [c] Mit einer angenommenen Aktivierungsentropie von  $-130 \,\mathrm{J\,mol^{-1}\,K^{-1}}$  abgeschätzt. [d] Mit einer angenommenen Aktivierungsentropie von  $-110 \,\mathrm{J\,mol^{-1}\,K^{-1}}$  abgeschätzt.

nerpotenzen weniger reaktiv als Allyltrimethylsilan. Eine allylische Trichlorsilylgruppierung desaktiviert im Vergleich zu Wasserstoff sogar um den Faktor 350 (Abb. 5, rechte Spalte, untere zwei Verbindungen)^[35].

Beide Spalten der Abbildung 5 zeigen eine Zunahme der Nucleophilie in der Reihe SiPh₃ < GePh₃ < SiMe₃ < SnPh₃, doch sind die Reaktivitätsunterschiede in der rechten Spalte kleiner, weil die zusätzliche Methylgruppe den Elektronenbedarf am intermediären Carbenium-Zentrum verringert.

#### 3.3.2.3. Alkylenolether und Silylenolether

Wegen der großen Nucleophilie von Enolethern wurde zur Bestimmung ihrer Reaktivität gegenüber starken Elektrophilen wie  $(p\text{-CIC}_6H_4)_2\text{CH}^+$  und  $(p\text{-MeC}_6H_4)_2\text{CH}^+$  die Laserflash-Methode eingesetzt^[27] (Tabelle 4). Wie der Vergleich von 1-(Methode eingesetzt^[27] (Tabelle 4).

Tabelle 4. Geschwindigkeitskonstanten für die Reaktionen von Alkoxy- und Siloxy-substituierten Ethylenen mit dem Bis(p-chlorphenyl)methyl-Kation A (CH₃CN), dem Bis(p-tolyl)methyl-Kation B (CH₃CN) [27] und dem Bis(p-dimethylaminophenyl)methyl-Kation C (CH₂Cl₂) [36] bei 20 °C.

Nucleo- phil	Elektro- phil	k [Lmol ⁻¹ s ⁻¹ ]	Nucleo- phil	Elektro- k	Lmol ⁻¹ s ⁻¹ ]
OEt	A B	$1.7 \times 10^8$ $6.3 \times 10^6$	OSiMe ₃	A	5.5 × 10 ⁷
OnBu	A	$2.0 \times 10^8$			
OiBu	A	$1.9\times10^8$	OSiMe,	C	$3.53 \times 10^{-2}$
OrBu	A	$4.2 \times 10^8$	OSiMe,	A	$2.1 \times 10^{8}$
OMe	A B	$7.4 \times 10^8$ $3.7 \times 10^7$	OSiMe,	A B	$1.5 \times 10^9$ $4.2 \times 10^7$
OEt	A	$7.7 \times 10^8$	OSiMe,	A	3.0 × 10 ⁹
✓∕ OEt	A	$1.3 \times 10^{9}$	OSiMe ₃	A	$2.5 \times 10^{9}$
OE	A B	$2.2 \times 10^9$ $2.2 \times 10^8$		B C	$6.0 \times 10^{8}$ $3.61 \times 10^{-1}$
$\bigcirc$	A	$2.7 \times 10^8$	OSiMe,	A B	$2.3 \times 10^9$ $1.3 \times 10^8$
	A	$1.3\times10^9$	$\langle  \rangle$		$1.7 \times 10^{5}$ $1.92 \times 10^{-2}$
	A B	$3.5 \times 10^9$ $1.2 \times 10^8$	OSiMe ₂ tBu	A	1.4 × 10°
OMe			$\bigcirc$	В	$1.1\times10^{8}$
	A B	$1.9 \times 10^9$ $2.2 \times 10^8$	OSiMe ₃	С	1 × 10 ⁻³
OEi	A	ca. $4 \times 10^{9}$	OSiMe ₃		
/ / \			OMe OSiMe ₃	A C	$2.4 \times 10^9$ $8.02 \times 10^1$

thoxy)- und 1-(Trimethylsiloxy)cyclopenten zeigt, unterscheiden sich Alkylenolether und Silylenolether in ihrer Reaktivität nur wenig. Viele der laserflashspektroskopisch bestimmten Geschwindigkeitskonstanten sind wegen der Nähe zur Diffusions-

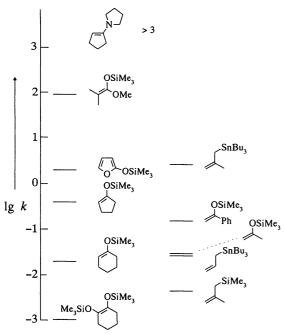



Abb. 6. Geschwindigkeitskonstanten der Reaktionen von  $(p\text{-Me}_2NC_6H_4)_2CH^+$  mit elektronenreichen Doppelbindungssystemen (CH $_2CI_2$ , 20 °C) [36, 88].

grenze nivelliert, und die aktivierungsbedingten Reaktivitätsunterschiede treten besser in den Reaktivitäten gegenüber dem wenig elektrophilen Bis(p-dimethylaminophenyl)carbenium-Ion hervor^[36]. Da unter diesen Bedingungen die Alkylenolether polymerisieren, wurden gegenüber diesem Carbenium-Ion bisher nur Daten für Silylenolether gemessen.

In Abbildung 6 sind die Reaktivitäten von Silylenolethern mit denen von Allylsilanen und Allylstannanen verglichen. Bei strukturanalogen Verbindungen  $(H_2C=CMe-CH_2-SiMe_3 < H_2C=CMe-OSiMe_3 \ll H_2C=CMe-CH_2SnBu_3)$  liegen die Silylenolether hinsichtlich ihrer Nucleophilie zwischen den Allylsilanen und den Allylstannanen.

#### 3.3.2.4. Arene

Die Umsetzung von Arenen mit dem Tricarbonylcyclohexadienyleisen-Kation folgt häufig nicht einem Geschwindigkeitsgesetz 2. Ordnung, was mit der reversiblen Bildung eines intermediären  $\pi$ -Komplexes gedeutet wurde^[37]. Für eine Reihe elektronenreicher Arene wurden jedoch Geschwindigkeitskonstanten 2. Ordnung gemessen (Tabelle 5).

Tabelle 5. Geschwindigkeitskonstanten für die Reaktionen von Arenen mit dem Tricarbonylcyclohexadienyleisen-Kation in Nitromethan bei 45 °C [14] sowie einige Aktivierungsparameter  $\Delta H^*$  [kJ mol  $^{-1}$ ] und  $\Delta S^*$  [J mol  $^{-1}$  K  $^{-1}$ ] (in Klammern)

Nucleophil	k [L mol ⁻¹ s ⁻¹ ]	Nucleophil	k [L mol ⁻¹ s ⁻¹ ]
	8.9 × 10 ⁻¹ (47; -96)	S Me	9.2 × 10 ⁻⁶
NH	$5.6 \times 10^{-1}$ (43.5; -110)		$6.4 \times 10^{-6}$
Me ₃ Sn -NMe ₂	$1.0 \times 10^{-1}$ (71; -43)	Me ₃ Si — OMe	$4.2 \times 10^{-6}$
NMe ₂	$6.1 \times 10^{-2}$ (53; -100)		$2.0 \times 10^{-6}$
€ Me	$3.9 \times 10^{-4}$	Me ₃ Sn CF ₃	$1.0 \times 10^{-6}$
Me ₃ Sn OMe	$1.7 \times 10^{-4}$		$2.8 \times 10^{-7}$
SiMe ₃	1.0 × 10 ⁻⁴		

Tabelle 6. Geschwindigkeitskonstanten für die Reaktionen substituierter Benzole mit Diarylcarbenium-Ionen ( $CH_2Cl_2$ ,  $-70\,^{\circ}C$ ) [38].

Nucleophil	k  mit ( $p\text{-CIC}_6H_4$ ) ₂ CH ⁺ [L mol ⁻¹ s ⁻¹ ]	k mit AnPhCH + [Lmol-1 s-1]	s [a]	N [a]
R =				
Н	ca. $4 \times 10^{-4}$		(1.20)	(-6.29)
Me	$7.8 \times 10^{-1}$		1.22	$-4.22^{'}$
1,4-Me ₂	1.8		(1.20)	(-4.18)
1,3-Me ₂	$4.2 \times 10^{2}$		1.40	-3.31
OMe		$3.1 \times 10^{-2}$	1.17	-1.56
1-OMe, 3-Me	ca. $5 \times 10^{2}$ [b]	$1.0 \times 10^{1}$	1.20	0.02
1,3-(OMe) ₂	<b>V</b> · ·	$6.4 \times 10^{3}$	1.20	2.40
1,3,5-(OMe) ₃		$3.3 \times 10^7$ [b]	1.30	3.40

[a] Nucleophilieparameter N und s werden in Abschnitt 4.2 eingeführt (in Klammern Näherungswerte). [b] Laserflashphotolyse in Acetonitril bei 20°C. Der Solvenseffekt ist generell bei diesen Reaktionen klein. Wegen  $\Delta H^* = 0$  entfällt die Temperaturkorrektur.

Auch Reaktionen von Diarylcarbenium-Ionen mit Benzolderivaten (Tabelle 6) weisen eine komplexe Kinetik auf^[38], doch führten wir dies auf die reversible Bildung eines σ-Komplexes zurück. In Einklang mit dieser Annahme erreichten wir durch Zusatz eines Tetraalkylammonium-Salzes einen Geschwindigkeitsverlauf 2. Ordnung, indem das in hoher Konzentration vorliegende Anion das intermediäre Benzenium-Ion rasch deprotoniert. Die relativen Reaktivitäten der Arene korrelieren mit ihren Basizitäten (Abb. 7), wie bereits aus den relativen Arenreaktivitäten aus Konkurrenzexperimenten geschlossen worden ist^[39].

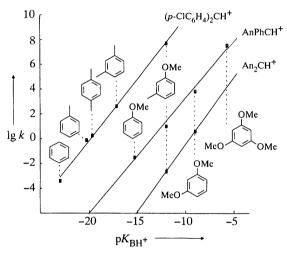



Abb. 7. Beziehung zwischen der Basizität von Arenen und ihrer Reaktivität gegenüber Diarylcarbenium-Ionen ( $CH_2Cl_2$ , -70°C) [38].

#### 3.3.3. Reaktivität von n-Nucleophilen

Aus der Reihe der n-Nucleophile sind insbesondere Amine, Phosphane und Phosphite sowie eine Reihe von Anionen untersucht worden. Besonders häufig wurden Reaktionen mit Wasser und Hydroxid-Ionen verfolgt, um die Elektrophilie von Carbokationen zu klassifizieren (vgl. Abschnitt 3.4.2).

Wie in Abschnitt 3.2 erläutert, sind die Geschwindigkeiten der Reaktionen von Carbokationen mit ungeladenen Nucleophilen in aprotischen Lösungsmitteln kaum von der Solvenspolarität abhängig, und die in Tabelle 7 angegebenen Geschwindigkeits-

Tabelle 7. Geschwindigkeitskonstanten für die Reaktionen von Phosphanen und Phosphiten mit dem Tricarbonylcyclohexadienyleisen-Kation (20 °C, Aceton).

Nucleophil	k [L mol ⁻¹ s ⁻¹ ]	Lit.	Nucleophil	k [L mol ⁻¹ s ⁻¹ ]	Lit.
$P(2-MeOC_6H_4)_3$	6.80 × 10 ⁵	[29, 41]	P(p-ClC ₆ H ₄ ) ₃	$9.08 \times 10^{2}$	[29]
PBu ₃	$3.36 \times 10^{5}$	[29]	$P(c-C_6H_{11})_3$	$1.74 \times 10^{2}$	[29]
	$1.3 \times 10^{5}$	[21]	$P(2-NCC_2H_4)_3$	$1.43 \times 10^{2}$	[29]
PEt ₂ Ph	$1.55 \times 10^{5}$	[29]		$6.39 \times 10^{2}$	[40]
PAn ₃	$6.42 \times 10^4$	[29]	$P(OBu)_3$	$1.01 \times 10^{2}$	[40]
PTol ₃	$2.83 \times 10^{4}$	[21]		$8.44 \times 10^{1}$	[21]
PPh ₂ Tol	$8.10 \times 10^{3}$	[29]	$P(OEt)_3$	$4.59 \times 10^{1}$	[29]
	$1.37 \times 10^{4}$	[40]	P(OMe) ₃	$2.97 \times 10^{1}$	[29]
PPh ₃	$7.46 \times 10^{3}$	[21]	$P(2-MeC_6H_4)_3$	7.7	[29]
P(2-NCC ₂ H ₄ )Ph ₂ P( <i>p</i> -FC ₆ H ₄ ) ₃	$5.33 \times 10^{3}$ $1.57 \times 10^{3}$	[40] [29]	P(OPh) ₃	$4.13 \times 10^{-2}$	[21]

konstanten gegenüber dem Tricarbonylcyclohexadienyleisen-Kation^[40] spiegeln die intrinsische Nucleophilie der Phosphane und Phosphite wider. Die höhere Reaktivität von Tris(*p*-tolyl)-phosphan und Tris(*p*-anisyl)phosphan im Vergleich zu Triphenylphosphan deutet darauf hin, daß die Elektronendichte am Phosphor durch mesomere Wechselwirkungen mit den Substituenten erhöht wird. Dagegen sind Phosphite deutlich weniger reaktiv als Phosphane, da hier der mesomere Effekt durch den ausgeprägten –I-Effekt des Sauerstoffs überkompensiert wird.

Wegen der geringen Lösungsmittelabhängigkeit lassen sich die Geschwindigkeitskonstanten aus den Tabellen 7 (Phosphane in Aceton) und 8 (Amine in Acetonitril) direkt vergleichen. Amine und Phosphane sind demnach in aprotischen Lösungsmitteln ähnlich nucleophil. Wie unter anderem von McClelland, Steenken et al. an Wasser-Acetonitril-Gemischen gezeigt^[48], sinkt die Nucleophilie der Amine beim Übergang von aprotischen zu protischen Lösungsmitteln, weil sich nun Wasserstoffbrückenbindungen zum Stickstoff ausbilden. Aus diesem Grund unterscheidet sich die von Ritchie bestimmte Nucleophiliereihe der Amine in Wasser (Tabelle 9) erheblich von der Reaktivitätsabfolge in aprotischen Solventien (Tabelle 8).

Tabelle 8. Geschwindigkeitskonstanten für die Reaktionen von Aminen mit dem Tricarbonylcyclohexadienyleisen-Kation (20 °C, Acetonitril).

Nucleophil	k [L mol ⁻¹ s ⁻¹ ]	Lit.	Nucleophil	k [L mol ⁻¹ s ⁻¹ ]	Lit.
Morpholin 2-Methylimidazol	$2.65 \times 10^{5}$ [a] $1.40 \times 10^{4}$ [a]	[14] [14]	Phenylalaninmethyl- ester		[40]
N-Methylimidazol 1-Phenylethylamin	$1.00 \times 10^4$ [a] $3.62 \times 10^4$	[14] [40]	Anilin 2-Methylpyridin	$2.78 \times 10^{3}$ [b] $2.15 \times 10^{3}$ [b]	[42] [44]
Nicotin 4-Ethylpyridin	$2.07 \times 10^4$ $1.72 \times 10^4$ [b]	[40] [47]	o-Methylanilin p-Chloranilin	$2.11 \times 10^{3}$ [b] $1.47 \times 10^{3}$ [b]	[42] [45]
p-Methylanilin Imidazol	$1.46 \times 10^4$ [b] $1.08 \times 10^4$	[42] [40, 43]	4-Pyridinaldehyd Nicotinsäuremethyl-	$1.09 \times 10^3$ $9.80 \times 10^2$	[40] [40]
Alaninethylester Phenylglycinethyl-	$9.13 \times 10^3$ $6.50 \times 10^3$	[40] [40]	ester 2-Ethylpyridin	$5.45 \times 10^{2}$	[46]
ester Pyridin	$7.23 \times 10^3$ [b]	[44]	4-Pyridincarbonitril 2.6-Dimethylpyridin	$3.65 \times 10^{2}$ $9.37 \times 10^{2}$ $2.80 \times 10^{1}$ [b]	[40] [47] [44]

[a] 0  $^{\circ}$ C. [b] Aus Eyring-Parametern extrapoliert.

Tabelle 9. Geschwindigkeitskonstanten für die Reaktionen von Aminen und anorganischen Anionen mit Malachitgrün (Wasser. 25 °C).

Nucleophil	$k \left[ L  mol^{-1}  s^{-1} \right]$	Lit.	Nucleophil	$k [L \text{mol}^{-1} \text{s}^{-1}]$	] Lit.
DABCO [c]	$2.6 \times 10^{-3}$	[49]	OH-	1.6	[50]
Et ₃ N	$3.0 \times 10^{-2}$	[49]		2.2	[20]
NH ₃	$3.0 \times 10^{-1}$	[50]	CN~	$4.9 \times 10^{-1}$	[50]
MeONH,	$9.6 \times 10^{-1}$	[50]		$6.9 \times 10^{-1}$	[20]
HONH ₂	4.34	[50]	CIO -	$1.4 \times 10^{3}$	[50]
H,NNH,	$4.2 \times 10^{1}$	[50]		$5.0 \times 10^{1}$ [b]	[51]
nPrNH,	$1.3 \times 10^{1}$ [a]	[48]	HOO-	$1.3 \times 10^4$ [b]	[51]
MeOCH ₂ CH ₂ NH ₂	3.6 [a]	[48]	SO ₃ -	$2.8 \times 10^{2}$ [b]	[51]
NCCH,CH,NH,	$8.8 \times 10^{-1}$ [a]	[48]	F	$4.5 \times 10^{3}$	[50]
CH ₃ CH ₃ NH ₃	$5.5 \times 10^{-2}$ [a]	[48]			

[a] Mit 33% Acetonitril bei 20°C. [b] Bei 30°C. [c] DABCO = 1,4-Diazabicy-clof2.2.2loctan.

Der von Parker bei  $S_N^2$ -Reaktionen beschriebene Reaktivitätsunterschied anionischer Nucleophile in protischen und aprotischen Lösungsmitteln^[6] wird auch bei den hier diskutierten Elektrophil-Nucleophil-Kombinationen beobachtet. Ritchies  $N_+$ -Parameter für das Azid-Ion in Wasser (7.6) und in Dimethylsulfoxid (DMSO, 10.07) implizieren beispielsweise, daß das Azid-Ion mit Carbokationen in Wasser fast 300mal langsamer reagiert als in DMSO^[11]. Anders als bei den oben diskutierten Kombinationen von Carbokationen mit Aminen sind aber bei der Kombination mit Anionen nicht allein Wasserstoffbrückenbindungen für die verminderte Nucleophilie verantwortlich. Da sich bei Kation-Anion-Kombinationen Ladungen neutralisieren, gibt es auch in aprotischen Lösungsmitteln bei Variation der Lösungsmittelpolarität große Reaktivitätsunterschiede^[52]. Die Kombinationsgeschwindigkeit nimmt mit abnehmender Lösungsmittelpolarität stark zu, so daß die Reaktivität anionischer Nucleophile gegenüber Kationen nur in bezug auf ein bestimmtes Lösungsmittel definiert werden kann.

#### 3.3.4. Reaktivität von σ-Nucleophilen (Hydriden)

In diesem Abschnitt beschränken wir uns auf die detailliert studierten H $^-$ -Abstraktionen von Elementhydriden der 4. Hauptgruppe. Bei den meisten Untersuchungen zu Hydridabstraktionen aus C-H-Bindungen diente das Triphenylcarbenium-Ion (= Trityl-Kation) als Hydridacceptor^[53]. Wegen ihrer Bedeutung in der Biochemie wurden vor allem Hydridübertragungen von NADH-Analoga, insbesondere von N-Benzyl-1,4-dihydronicotinamid (BDHNA) eingehend untersucht^[54]. Bunton et al. zeigten, daß die Umsetzungen von Kationen mit diesem Hydriddonor die  $N_+$ -Beziehung von Ritchie erfüllen^[55]. Da diese Daten vorwiegend zur Charakterisierung der Elektrophilie von Carbenium-Ionen dienen, werden sie in Abschnitt 3.4.2 diskutiert.

Die Reaktivität von Silanen, Germanen und Stannanen gegenüber AnPhCH⁺ als Hydridacceptor steigt mit zunehmendem Metallcharakter des Zentralatoms und dem damit verbundenen zunehmenden Hydridcharakter des Wasserstoffs (Abb. 8. Tabelle 10). Der Substituenteneinfluß auf die Reaktivität der Silane zeigt, daß konjugative und hyperkonjugative Effekte die intermediäre Bildung von Silylium-Ionen deutlich weniger erleichtern als die von Carbenium-Ionen. Eine frühere Behauptung, wonach Hydridabstraktionen aus Silanen über eine geschwindigkeitsbestimmende Einelektronenübertragung erfolgen^[53a], konnte durch die Bestimmung von H-D-Isotopeneffekten bezüglich Reaktionsgeschwindigkeit und Produktverteilung eindeutig widerlegt werden^[28]: Das Hydrid wird im geschwindigkeitsbestimmenden Schritt vom Siliciumatom auf das Carbenium-Kohlenstoffatom übertragen.

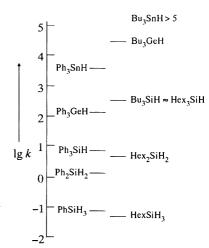



Abb. 8. Geschwindigkeitskonstanten für die Reaktionen von AnPhCH⁺ mit Hydriddonoren (-70°C, CH₂Cl₂).

Das Reduktionsvermögen von *N*-Benzyl-1,4-dihydronicotinamid liegt in Wasser zwischen dem von BH₄ und BH₃CN (Tabelle 11). In weniger polaren Lösungsmitteln ist die Reakti-

Tabelle 11. Geschwindigkeitskonstanten für die Reaktionen des Anisylferrocenylcarbenium-Ions mit *N*-Benzyl-1,4-dihydronicotinamid (BDHNA) und Borhydrid-Anionen (25 °C, Wasser) [55].

Nucleophil	$k \left[ L  \text{mol}^{-1}  \text{s}^{-1} \right]$	
BH ₄ BDHNA BH ₃ CN -	$   \begin{array}{r}     1.5 \times 10^6 \\     1.5 \times 10^5 \\     7.4 \times 10^3   \end{array} $	_

vität der anionischen Hydriddonoren BH₄⁻ und BH₃CN⁻ größer als die von BDHNA, d.h. der ungeladene Hydriddonor hat dort die geringste Reaktionsgeschwindigkeit unter diesen Reduktionsmitteln^[55].

#### 3.4. Elektrophile

## 3.4.1. Das Reaktivitäts-Selektivitäts-Prinzip als Grundlage für Elektrophilieskalen?

Wegen der Schwierigkeiten, absolute Reaktionsgeschwindigkeiten zu bestimmen, ist die Selektivität  $S_F$  von Elektrophilen als

Tabelle 10. Geschwindigkeitskonstanten für die Reaktionen von AnPhCH+ mit Hydriddonoren (-70°C, CH₂Cl₂) [28. 56].

Nucleophil	$ [L  \text{mol}^{-1}  \text{s}^{-1}] $	Nucleophil	k [L mol ⁻¹ s ⁻¹ ]	Nucleophil	$ [L  \text{mol}^{-1}  \text{s}^{-1}] $
HSiMe,	6.37 × 10 ¹	HSiPh,	8.27	HSiMe ₂ (OSiMe ₃ )	5.86 × 10 ¹
HSiMe,Et	$9.06 \times 10^{1}$	H,SiMePh	5.33	HSiMe ₂ (CH ₂ CMe ₃ )	$1.65 \times 10^{2}$
HSiMeEt,	$1.16 \times 10^{2}$	HSiMe,Ph	$1.49 \times 10^{2}$	HSiMe ₂ (CH ₂ SiMe ₃ )	$4.99 \times 10^{2}$
HSiEt,	$1.24 \times 10^{2}$	HSiMe, Tol	$3.30 \times 10^{2}$	HSiMe,(CH,GeMe3)	$8.69 \times 10^{2}$
HSi(nPr)	$2.25 \times 10^{2}$	HSiMe ₂ An	$8.71 \times 10^{2}$	HSiMe, (CH, SnMe,)	$3.53 \times 10^{3}$
HSi(iPr)	$3.67 \times 10^{2}$	$HSiMe_2(p-ClC_6H_4)$	$4.96 \times 10^{1}$	HSiMe(CH,SiMe ₃ ) ₂	$5.12 \times 10^{2}$
$HSi(nBu)_3$	$3.85 \times 10^{2}$	HSiMePh,	$2.24 \times 10^{1}$	HSiMe,(CH,SiMe,nBu)	$9.79 \times 10^{1}$
$H_3Si(nHex)$	$4.79 \times 10^{-2}$	HSiMe, CH, Ph	$2.58 \times 10^{1}$	HSiMe, (CH, SiMe, Ph)	$3.44 \times 10^{1}$
$H_sSi(nHex)$ ,	7.43	HSiMe,CH,Cl	$2.11 \times 10^{-1}$	HGePh ₃	$1.14 \times 10^{2}$
HSi(nHex),	$3.78 \times 10^{2}$	HSiMe,Cl	$2.1 \times 10^{-1}$	HGe(nBu),	$2.8 \times 10^{4}$
H ₃ SiPh	$6.96 \times 10^{-2}$	HSi(SiMe ₃ ) ₃	$4.57 \times 10^{2}$	HSnPh,	$4.98 \times 10^{3}$
H,SiPh,	1.20	3/3		•	

998

Angew. Chem. 1994. 106, 990-1010

Indiz für deren Reaktivität verwendet worden [39b].  $S_{\rm F}$  ist ein Maß für die Fähigkeit eines Elektrophils, zwischen der *meta*-und der *para*-Position eines monosubstituierten Benzols zu unterscheiden [Gl. (c)] mit  $m_{\rm f}$ ,  $p_{\rm f}$ : partielle Geschwindigkeitsfaktoren; b: Proportionalitätskonstante. Nach dem Reaktivitäts-Selektivitäts-Prinzip sollen reaktive Elektrophile durch geringe Selektivität und wenig reaktive Elektrophile durch hohe Selektivität charakterisiert sein. Die durch Gleichung (c) ausgedrückte und experimentell gut belegte Proportionalität zwischen intra-[lg  $(p_{\rm f}/m_{\rm f})$ ] und intermolekularer Selektivität [(lg  $p_{\rm f}$ )] ist eine notwendige Folge der Linearen Freien-Enthalpie-(Gibbs-Energie)-Beziehungen, die für die elektrophilen Substitutionen in *meta*-und *para*-Position eines monosubstituierten Benzols gelten.

$$S_{\rm F} = \lg \left( p_{\rm f} / m_{\rm f} \right) = b \lg p_{\rm f} \tag{c}$$

Die Beziehung zwischen Selektivität  $S_{\rm F}$  und Reaktivität ist jedoch nicht eindeutig, da sowohl langsame Reaktionen mit geringer Selektivität (z.B. Mercurierungen) als auch rasche Reaktionen mit hoher Selektivität (z.B. Acylierungen) bekannt sind [57]. Mit dem Fall des Reaktivitäts-Selektivitäts-Prinzips [58–60] sind diese Beispiele aber nun keine Ausnahmen von einer allgemeinen Regel mehr und der Rückschluß auf Elektrophil-Reaktivitäten aus Selektivitätsdaten muß aufgegeben werden [16, 26, 59, 60]. Elektrophilieskalen müßsen in anderer Weise ermittelt werden.

### 3.4.2. Elektrophilieskalen aus "konstanten Selektivitätsbeziehungen"

In Ritchies eingangs zitierter  $N_+$ -Beziehung [Gl. (b)] ist außer dem bereits diskutierten Nucleophilieparameter  $N_+$  auch der vom Nucleophil unabhängige Elektrophilieparameter  $\lg k_o$  enthalten, wobei  $k_o$  die Geschwindigkeitskonstante der Reaktion eines bestimmten Elektrophils mit Wasser ist^[9]. Der Parameter  $\lg k_o$  kann demzufolge auch als  $E_+$  bezeichnet werden [Gl. (d)].

$$\lg k = E_+ + N_+ \tag{d}$$

In analoger Weise erhielten Kane-Maguire, Sweigart et al. unter Verwendung von Phosphanen und Phosphiten als Refe-

Tabelle 12. Relative Reaktivitäten von Metall-π-Komplexen gegenüber Phosphor-Nucleophilen (in Aceton, Acetonitril und Nitromethan, bei 20 °C) [14]; vgl. auch Abb. 2.

Elektrophil	$\lg k_{re}$	, Elektrophil	lg krei
$[Mn(CO)_3(C_7H_8)]^+$	9.30	$[Fe(CO)_3(C_2H_9)]^+$	5.67
$[Fe(C_6H_6)_2]^{2+}$	8.92	$[Fe(CO)_2(PPh_3)(C_0H_{71}]^+$	5.62
$[Fe(CO)_2(NO)(C_4H_4)]^+$	8.15	$[FeCp(CO)_2(C_2H_4)]^+$	5.61
$[Mn(CO)_2(PPh_3)(C_7H_8)]^+$	7.48	$[Mn(CO)(NO)(PPh_3)(C_6H_7)]^+$	5.48
[Fe(CO) ₃ (C ₆ H ₋ )] ⁺	7.45	$[FeCp(C_7H_8)]^+$	5.26
$[Ru(C_6H_6)_2]^{2+}$	7.43	$[Mn(CO)_2(NO)(6-PhC_6H_6)]^+$	4.78
$[Os(C_6H_6)_2]^{2+}$	6.84	$[Mn(CO)_3(C_6H_6)]^+$	4.70
$[Fe(CO)_3(2-MeOC_6H_6)]^+$	6.72	$[Re(CO)_3(C_6H_6)]^+$	4.65
$[Fe(CO)(NO)(PPh_3)(C_4H_4)]^+$	6.48	$[Mn(CO)_2(NO)(6-MeC_6H_6)]^+$	4.60
$[Cr(CO)_3(C_7H_7)]^+$	6.48	$[CoCp(C_6H_7)]^+$	4.18
$[CoCp(C_8H_{11})]^+$	6.43	[FeCp(CO) ₂ (CH ₂ CHCH ₃ )] ⁺	4.11
$[Mn(CO)_2(NO)(6-PhC_7H_8)]^+$	6.11	$[Mn(CO)(NO)(PPh_3)(6-MeC_6H_6)]^+$	2.00
$[Mn(CO)_2(NO)(6-CNC_6H_6)]^+$	6.08	$[Fe(CO)_2I(C_6H_7)]$	1.95
$[Mo(CO)_3(C_2H_2)]^+$	6.00	$[CoCp(C_2H_9)]^+$	1.88
$[Mn(CO)_2(NO)(C_7H_9)]^+$	5.79	$[Fe(CO)_2I(C_7H_9)]$	0.00
$[W(CO)_3(C_7H_7)]^+$	5.77		

renznucleophilen eine Elektrophilieskala für Übergangsmetall- $\pi$ -Kohlenwasserstoff-Komplexe (Tabelle 12)^[14].

Die von uns untersuchten π-Nucleophile sind großenteils weniger reaktiv als die von Ritchie, Kane-Maguire und Sweigart studierten n-Nucleophile und eignen sich deshalb auch zur Charakterisierung stärkerer Elektrophile. So wie die Elektrophilieskala der Tabelle 12 aus dem Ordinatenabschnitt der Abbildung 2 erhalten wird, entnehmen wir nun die relative Elektrophilie der Diarylcarbenium-Ionen aus den Abszissenabschnitten der Abbildung 3 und verwandter Auftragungen. Da die konstante Selektivität von Diarylcarbenium-Ionen gegenüber Vinylderivaten auch für andere Typen von C-Elektrophilen gilt^[61] (Abb. 9), gibt ihre Lage in Abbildung 9 ihre relative Elektrophilie wieder.

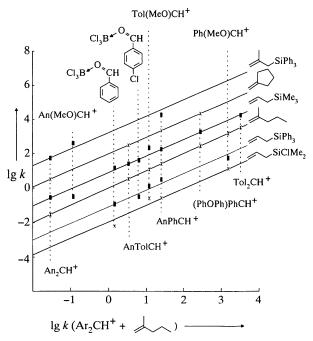



Abb. 9. Geschwindigkeitskonstanten für die Reaktionen von Diaryl- und Methoxycarbenium-Ionen sowie Aldehyd-Lewis-Säure-Komplexen mit Alkenen und Alylsilanen (–70°C. CH₂Cl₂). – Die Geschwindigkeitskonstanten für die Reaktionen der Lewis-Säure-Komplexe und des Anisyl(methoxy)carbenium-Ions gegenüber 2-Methyl-1-penten wurden über Lineare Freie-Enthalpie-Beziehungen extrapoliert. Zur Erleichterung der Diskussion wurde die Gerade für 2-Methyl-1-penten (Einheitsgerade) mit abgebildet.

Wenngleich für Reaktionen einiger Carbenium-Ionen mit Wasser die Gültigkeit der  $N_+$ -Beziehung demonstriert worden ist, kann nicht davon ausgegangen werden, daß die in Tabelle 13 angegebene Reaktivitätsabfolge der Elektrophile gegenüber Wasser exakt deren relative Reaktivität gegenüber anderen Nucleophilen widerspiegelt, zumal sich die k-Werte auf unterschiedlich zusammengesetzte Lösungsmittelgemische beziehen. Beispielsweise reagiert das  $\alpha$ -Methoxybenzyl-Kation um zwei Zehnerpotenzen rascher mit Wasser als das Bis(p-tolyl)carbenium-Ion, während sich diese beiden Elektrophile in ihrer Reaktivität gegenüber  $\pi$ -Nucleophilen kaum unterscheiden (Abb. 9). Möglicherweise wirkt sich die anomere Stabilisierung der Halbacetale bereits auf den Übergangszustand der Reaktionen von Methoxycarbenium-Ionen mit Wasser aus. Trotz dieser Diskrepanz bieten die Daten in Tabelle 13 wertvolle Hinweise auf die Reaktivi-

Tabelle 13. Geschwindigkeitskonstanten pseudo-erster Ordnung für die Reaktionen von Carbenium-Ionen mit Wasser (20 °C, Methoden: A = Azid-Uhr [24, 68], B = direkte Geschwindigkeitsmessungen; TFE = 2.2.2-Trifluorethanol).

Elektrophil	$k_{\rm w} [\rm s^{-1}]$	Method	e Solvens	Lit.
$R^{1} + OR^{2}$				
$\mathbb{R}^3$				
$R^1, R^2, R^3 =$				
H,Me,H	$2 \times 10^9 [a]$	A	H ₂ O	[62]
Me,Me,H	$9.5 \times 10^7 \text{ [a]}$ $5 \times 10^7 \text{ [a]}$	A [d] A	TFE/H ₂ O 1:1 H ₂ O	[63] [62]
Me,Me,OMe	$7.0 \times 10^6$ [a]	A [d]	TFE/H ₂ O 2:1	[63]
OR ²				
R—+(OR ²				
$R^1$ , $R^2$ =				
H.Et	$2 \times 10^{7}$	В	H ₂ O/CH ₃ CN	[64]
H.iPr	$2.2 \times 10^6$	В	H ₂ O/CH ₃ CN	[64]
Me,Me Me,-(CH ₂ ) ₃ -	$1.8 \times 10^5$ $1.8 \times 10^5$	B B	H ₂ O/CH ₃ CN H ₂ O/CH ₃ CN	[64] [64]
Me,Et	$2.9 \times 10^4$	В	H ₂ O/CH ₃ CN	[64]
OMe,-(CH ₂ ) ₃ -	$5.4 \times 10^{3}$	В	$H_2O$	[65]
OMe,Me	$1.4 \times 10^3$	В	H ₂ O	[65]
OEt,Et	$5.9 \times 10^{1}$	В	$H_2O$	[65]
$R^{1} \xrightarrow{+} X \xrightarrow{R^{2}} R^{2}$ $X \xrightarrow{R^{2}} R^{2}$				
$X, X', R^1, R^2 =$				
O.O.H.Me	$4.6 \times 10^{7}$	В	H ₂ O/CH ₃ CN	[64]
O,O,Me,H O,O,Ph,H	$1.4 \times 10^6$ $4.0 \times 10^4$	B B	H ₂ O/CH ₃ CN	[64]
O,O,Me,Me	$3.8 \times 10^4$	В	H ₂ O/CH ₃ CN H ₂ O/CH ₃ CN	[64] [64]
O.O.OMe,H	$2.7 \times 10^{4}$	В	H ₂ O	[65]
O,O,An,H	$1.2 \times 10^3$ [a]	В	CH ₃ CN/H ₂ O 1:9	[66]
S,O,An,H S,S,Ph,H	$4.6 \times 10^{1}$ [a] $5.6 \times 10^{-1}$ [a]	B B	CH ₃ CN/H ₂ O 1:9 CH ₃ CN/H ₂ O 1:1	[66] [67]
S,S,An,H	$6.1 \times 10^{-2}$ [b]	В	CH ₃ CN/H ₂ O 1:9	[66]
$R^2 + R^3$				
₹ R¹				
$R^{1}, R^{2}, R^{3} =$				
H,Me,H H,Me,Me	$1 \times 10^{11}$ [a] $1.7 \times 10^{10}$ [a]	A	TFE/H ₂ O 1:1	[68]
Me,Me,H	$4 \times 10^9 \text{ [a]}$	A A	TFE/H ₂ O 1:1 TFE/H ₂ O 1:1	[69] [68]
OMe,H,H	$2 \times 10^{8} [a]$	A	TFE/H ₂ O 1:1	[70]
OMe,Me,H	$5 \times 10^{7} [a]$	A	TFE/H ₂ O 1:1	[68]
OMe.CO ₂ Et.H NMe ₂ .CH ₃ .H	$1.4 \times 10^{7}$ [a] $2 \times 10^{3}$ [a]	A A	TFE/H ₂ O 1:1 TFE/H ₂ O 1:1	[71] [68]
• •	2 / 10 [4]	**	11 2,1120 1.1	[oo]
R ³				
R'	'R ²			
$R^{1}, R^{2}, R^{3} = H, H, H$	$3 \times 10^{8} [a]$	Α	TFE/H ₂ O 1:1	[69]
	ca. $9 \times 10^{8}$	В	CH ₃ CN/H ₂ O 1:2	[72]
Ме,Н,Н	ca. $1.2 \times 10^8$	В	CH ₃ CN/H ₂ O 1:2	[72]
H,H,Me Me,Me,H	$6.8 \times 10^{7}$ [a] $3.2 \times 10^{7}$	A	TFE/H ₂ O 1:1	[69]
OMe.H.H	$3.2 \times 10^{6}$ $2.1 \times 10^{6}$	B B	CH ₃ CN/H ₂ O 1:2 CH ₃ CN/H ₂ O 1:2	[72] [72]
OMe,Me,H	$9.1 \times 10^{5}$	В	$CH_3CN/H_2O$ 1:2	[72]
OMe,OMe.H	$1.3 \times 10^5$	В	CH ₃ CN/H ₂ O 1:2	[72]
$NMe_2.NMe_2.H$	$2.6 \times 10^{-2}$	В	H ₂ O	[72]

tät zahlreicher synthetisch wichtiger Elektrophile, wie die in Abschnitt 4.2 behandelte Korrelation zeigt.

Wie in Abschnitt 3.3.4 erwähnt, ist die Geschwindigkeit des Hydridtransfers von BDHNA auf zahlreiche Elektrophile untersucht worden^[54] (Tabelle 14). Da es sich bei dieser Verbin-

Tabelle 13. (Fortsetzung)

Elektrophil	k _w [s ⁻¹ ]	Methode	Solvens	Lit.
$\mathbb{R}^2$				
$R^{1}, R^{2}, R^{3} = R^{3}$				
NMe ₂ ,NMe ₂ ,NMe ₂ NMe ₂ ,NMe ₂ ,H	$3.5 \times 10^{-5}$ [a] $2.11 \times 10^{-4}$ [a]	B B	H ₂ O H ₂ O	[20] [20]
$NMe_2, NMe_2, CF_3$	$2.00 \times 10^{-4}$ [a]	В	H ₂ O	[74]
ОМе,ОМе.ОМе Н,Н,Н	$1.00 \times 10^{1}$ $1.5 \times 10^{5}$	B B	CH ₃ CN/H ₂ O 1:2 CH ₃ CN/H ₂ O 1:2	[72] [72]
+ CHR				
Fe 💮				
R =	4.4.401.5.3			
Ph An	$4.4 \times 10^{1}$ [a] $4.3 \times 10^{1}$ [a]	B B	H₂O H₂O	[75] [55]
$(C_5H_5)Fe(C_5H_4)$	$2.7 \times 10^{-2}$ [a]	В	H ₂ O/CH ₃ CN 1:1	[55]
R				
10 to				
R = H	2.3 × 10 ⁴	В	CH ₃ CN/H ₂ O 1:4	[76]
Ph	$2.3 \times 10^{4}$ [a]	В	CH ₃ CN/H ₂ O 1:4	[76]
R				
R =				
H p-ClC ₆ H ₄	2.6 [c] 1.2 [c]	B B	H₂O H₃O	[77] [77]
Ph	1.0 [c]	В	H ₂ O	[77]
An p-Me ₂ NC ₆ H ₄	$2.7 \times 10^{-1}$ [c] $2 \times 10^{-2}$ [c]	B B	H ₂ O H ₂ O	[77] [77]
	+			
	$3.6 \times 10^{3}$	В	CH ₃ CN/H ₂ O 2:3	[78]
		-	. ,	[]

[a] Bei 25 °C. [b] Bei 30 °C. [c] Bei 23 °C. [α] Sulfit statt Azid.

dung um ein relativ starkes Nucleophil handelt, wurden insbesondere wenig reaktive Elektrophile eingesetzt, die mit Wasser nicht oder kaum meßbar reagieren. Die Reaktionsgeschwindigkeiten von Carbokationen mit BDHNA wurde in der Regel in Wasser als Lösungsmittel bestimmt. Wegen der möglichen Bildung von Wasserstoffbrückenbindungen lassen sich diese Geschwindigkeitskonstanten nur hinsichtlich ihrer Größenordnung mit denen vergleichen, die für die Reaktion von BDHNA mit Kationen in aprotischen Solventien erhalten wurden.

#### 3.5. Einfluß der Temperatur

Der Einfluß der Temperatur auf die Selektivität bei Radikalund Carbenreaktionen wurde von Giese ausführlich diskutiert^[59,87]. Die Selektivitätsabfolge verschiedener Radikale in bezug auf ein Paar von Konkurrenten ist oberhalb und unterhalb der isoselektiven Temperatur genau entgegengesetzt; bei

Tabelle 14. Geschwindigkeitskonstanten für die Reaktionen verschiedener Elektrophile mit BDHNA (25 °C, Wasser/Acetonitril) (vgl. [54]; fc = Ferrocenyl).

Elektrophil	$k [L mol^{-1} s^{-1}]$	Lit.	Elektrophil	$k \left[ L  \text{mol}^{-1}  \text{s}^{-1} \right]$	Lit.
N-Methylpyridinium	4.2 × 10 ⁻⁷	[79]	N-Methylphthalazinium	4.0 × 10 ⁻²	[83]
3-CONH,- [d]	$7.5 \times 10^{-4}$	[80]	N-Methylphenanthridinium	$8.0 \times 10^{-2}$	[80]
3-NO,-	$7.2 \times 10^{-1}$	[80]	N-Methyl-3,4-dihydroisochinolinium	$3.3 \times 10^{-3}$	[83]
N-Methylchinolinium [c]	$5.0 \times 10^{-3}$	[81]	[fcAnCH] ⁺ [b]	$1.5 \times 10^{5}$	[55]
3-CONH,-	2.8	[81]	[fc,CH]+	$4.7 \times 10^{1}$	[55]
3-NO,-	$6.5 \times 10^{3}$	[81]	[fc ₃ PhC] ⁺	$4.2 \times 10^{-1}$	[55]
N-Methylacridinium	$4.0 \times 10^{2}$	[82]	An ₃ C ⁺	$2.1 \times 10^{5}$	[85]
Tropylium	$2.5 \times 10^{4}$	[79]	Malachitgrün	$2.7 \times 10^{1}$	[85]
Xanthylium	$2.7 \times 10^{8}$	[79]	Trifluoracetophenon [c]	$8.1 \times 10^{-2}$	[86]
N-Methylisochinolinium	$8.0 \times 10^{-4}$	[83]	3,10-Dimethyl-5-desazaisoalloxazin [a]	$3.4 \times 10^{-2}$	[84]
4-CONH,	$4.6 \times 10^{-2}$	[83]	,		
5-NO ₃ -	$1.2 \times 10^{-1}$	[79]			

[a] In Isopropanol/Wasser 4:1. [b] In Wasser. [c] 50 °C. 25% Isopropanol. [d] N-Benzyl-Verbindung.

der isoselektiven Temperatur ist die Selektivität aller Radikale der betreffenden Reaktionsserie gleich. Die isoselektive Temperatur für die Umsetzung von Diarylcarbenium-Ionen mit dem Paar Allyltrimethylsilan/2-Methyl-2-buten liegt bei ca. 1000 K (Abb. 10), d.h. weit außerhalb des Meßbereichs (im Idealfall isentropischer Reaktionsserien liegt sie bei  $T=\infty$ ).

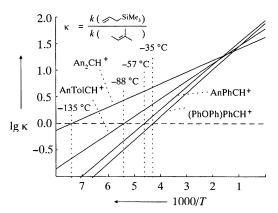



Abb. 10. Selektivität  $\kappa$  von Carbenium-Ionen gegenüber dem Paar Allyltrimethylsilan/2-Methyl-2-buten als Funktion der Temperatur.

In einigen Fällen ist die Umsetzung bei einer bestimmten Temperatur unselektiv ( $\lg \kappa = 0$ ), oberhalb und unterhalb davon ist die relative Nucleophilie der beiden Reaktionspartner umgekehrt. Beispielsweise reagiert das p-Anisyl(phenyl)carbenium-Ion unterhalb von -57 °C rascher mit 2-Methyl-2-buten als mit Allyltrimethylsilan, während oberhalb von -57 °C das Allyltrimethylsilan reaktiver ist. Da bei -57 °C das betreffende Elektrophil nicht zwischen den beiden Nucleophilen zu differenzieren vermag, haben wir die Temperatur am Schnittpunkt mit der Nullinie als "aselektive Temperatur" bezeichnet[16b]. Damit ergibt sich ein weiteres Problem für die Konstruktion von Reaktivitätsskalen: Die relative Reaktivität der beiden in Abbildung 10 betrachteten Nucleophile hängt sowohl vom Elektrophil als auch von der Temperatur ab. Bei tiefen Temperaturen ist 2-Methyl-2buten das stärkere Nucleophil, oberhalb der vom Elektrophil abhängigen aselektiven Temperatur ist es Allyltrimethylsilan.

Der Temperatureinfluß ist in der Regel zwar relativ gering, so daß starke Veränderungen der Elektrophilie- oder Nucleophiliereihen bei Temperaturvariation ausbleiben. Wenn jedoch Nucleophile ähnlicher Reaktivität, aber unterschiedlicher Aktivie-

rungsenthalpie (und -entropie) verglichen werden, kann es zur Vertauschung von Positionen auf der Reaktivitätsskala kommen. Wie läßt sich abschätzen, ob mit einer solchen temperaturabhängigen Umkehr relativer Reaktivitäten zu rechnen ist?

Bei fast allen der bisher untersuchten Reaktionsreihen fanden wir, daß die Aktivierungsentropie weitgehend vom Strukturtyp des Nucleophils bestimmt wird und nur wenig vom carbokationischen Elektrophil abhängt, selbst wenn sich dessen Reaktivität um sechs Zehnerpotenzen ändert (Tabelle 15). Daher lassen

Tabelle 15. Aktivierungsentropien und Reaktionsgeschwindigkeiten (-70°C) für die Reaktionen von Carbokationen mit Nucleophilen (CH₂Cl₂).

Nucleophil	Elektrophil	ΔS* [J mol ⁻¹ K ⁻¹ ]	k [Lmol ⁻¹ s ⁻¹ ]	Lit.
\ <u>_</u>	Tol ₂ CH ⁺ AnTolCH ⁺ An ₂ CH ⁺	-156 -151 -155	$6.79 \times 10^{4}$ $1.83 \times 10^{1}$ $8.38 \times 10^{-2}$	[16] [16] [16]
SiMe ₃	(PhOPh)PhCH ⁺	- 111	$1.89 \times 10^{3}$	[16]
	AnPhCH ⁺	- 122	$1.87 \times 10^{2}$	[16]
	AnTolCH ⁺	- 117	$2.63 \times 10^{1}$	[16]
	An ₂ CH ⁺	- 124	$2.81 \times 10^{-1}$	[16]
OSiMe,	$(p-Me_2NC_6H_4)_2CH^+$ [b]	-98	$1.73 \times 10^{-1}$	[88]
	$[Fe(CO)_3(C_6H_7)]^+$ [a, b]	-103	$2.55 \times 10^{-2}$	[89]
$HSnBu_3$	$(p-Me_2NC_6H_4)_2CH^+$ [b]	-85	5.22 × 10 ¹	[56]
	$[Fe(CO)_3(C_6H_7)]^+$ [a, b]	-82	4.87	[89]

[a] In Aceton. [b] Bei 20 °C.

sich auch für solche Elektrophil-Nucleophil-Kombinationen, für die nur Geschwindigkeitskonstanten bei einer Temperatur bekannt sind, die Aktivierungsparameter und damit die Temperaturabhängigkeit der Reaktionsgeschwindigkeit abschätzen, sofern die Aktivierungsentropie für die Reaktion des betreffenden oder eines strukturell verwandten Nucleophils gegenüber irgendeinem Carbokation bekannt ist.

## 4. Konstruktion gemittelter Elektrophilie- und Nucleophilieskalen

## 4.1. Die Koexistenz von konstanten Selektivitätsbereichen und Domänen des Reaktivitäts-Selektivitäts-Prinzips

Streng genommen ist die Konstruktion von Elektrophilie- und Nucleophilieskalen nur in Bereichen konstanter Selektivität

Angew, Chem. 1994, 106, 990–1010

sinnvoll, denn nur dann ist die gegenüber einem Elektrophil ermittelte Nucleophiliereihe auch auf ein anderes Elektrophil übertragbar und umgekehrt. Dies gilt angenähert für die von Ritchie sowie die von Kane-Maguire und Sweigart studierten Systeme (vgl. Abschnitt 2).

Bei Reaktionen von Diarylcarbenium-Ionen mit Verbindungen mit terminalen C-C-Doppelbindungen bleibt die relative Reaktivität der  $\pi$ -Nucleophile gleich, während die Elektrophilie der Carbenium-Ionen um sechs Größenordnungen variiert wird  $(k = 10^{-2} - 10^4 \text{ L mol}^{-1} \text{ s}^{-1}$ , siehe Abb. 3). Für Trimethylsiloxycyclohexen und 2-Methyl-1-penten (Abb. 11) gilt die konstante Selektivitätsbeziehung bis zu Geschwindigkeitskonstanten von ca.  $5 \times 10^7 \text{ L mol}^{-1} \text{ s}^{-1}$ . Bei noch stärkeren Elektrophilen wird

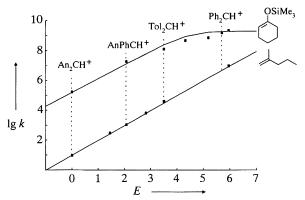



Abb. 11. Vergleich der Geschwindigkeitskonstanten für Reaktionen von Diarylcarbenium-lonen mit 2-Methyl-1-penten und Trimethylsiloxycyclohexen (20 °C). Der als Abszisse verwendete Elektrophilieparameter *E* wird in Abschnitt 4.2 eingeführt.

dieser k-Wert überschritten, und man gelangt an die Diffusionsgrenze. Hier wird der Gültigkeitsbereich der Linearen Freien-Enthalpie-Beziehung verlassen, so daß das Differenzierungsvermögen der Elektrophile bezüglich der beiden  $\pi$ -Nucleophile abnimmt. Ein inverser Zusammenhang zwischen Reaktivität und Selektivität kann somit (vgl. Abschnitt 3.5) nur dann mit Sicherheit erwartet werden, wenn die Geschwindigkeitskonstante für mindestens einen der Konkurrenzpartner größer als  $5 \times 10^7 \, \mathrm{Lmol}^{-1} \, \mathrm{s}^{-1}$  ist. Da dies der Bereich ist, in dem die Geschwindigkeitskonstanten der Reaktionen vieler reaktiver Zwischenstufen liegen, läßt sich der Erfolg des Reaktivitäts-Selektivitäts-Prinzips beim Studium von Carben- und Radikalreaktionen erklären. Giese hat jedoch gezeigt, daß auch bei diesen Systemen häufig Verletzungen des Reaktivitäts-Selektivitäts-Prinzips auftreten [59].

Unsere Beobachtung, daß Abweichungen von den Linearen Freien-Energie-Beziehungen erst bei Annäherung an die Diffusionsgrenze auftreten, steht grundsätzlich in Einklang mit den Schlußfolgerungen aus Selektivitätsstudien mit solvolytisch erzeugten Carbenium-Ionen^[26, 90, 91]. Allerdings wird bei diesen Reaktionen ein enger Übergangsbereich postuliert^[91], in dem die Selektivität mit zunehmender Reaktivität abnehmen soll, weil der Übergangszustand den Reaktanten ähnlicher wird (Hammond-Bereich). Aus unseren Daten können wir keinen Hinweis auf einen solchen Bereich entnehmen, so daß wir bei diesen Reaktionen Verschiebungen des Übergangszustands auf der Reaktionskoordinate als Ursache für die abnehmende Selektivität bei zunehmender Reaktivität in Frage stellen.

Die Beziehungen zwischen Reaktivität und Selektivität bei Reaktionen von Carbenium-Ionen mit  $\pi$ -Nucleophilen haben jedoch nicht generell die einfache, in den Abbildungen 3 und 11 gezeigte Form. Allgemein finden wir, daß  $\pi$ -Nucleophile mit einer Methylgruppe an der Stelle der C-C-Verknüpfung empfindlicher auf eine Variation des Elektrophils reagieren als die entsprechenden unsubstituierten Verbindungen. In Abbildung 12 haben beispielsweise die Geraden für 2-Methyl-2-buten und trans-β-Methylstyrol eine größere Steigung als die für Isobuten und Styrol. Wenn auch der Grund für die unterschiedlichen Steigungen nicht geklärt werden konnte, kann doch ausgeschlossen werden, daß nur sterische Faktoren dafür ursächlich sind, da z.B. Tetramethylethylen, 2-Methyl-4-trimethylsilyl-2buten und 1-Methoxy-2-methyl-1-trimethylsiloxy-1-propen (vgl. Tabelle 16) trotz gleicher Substitution am Angriffsort des Elektrophils deutlich unterschiedlich auf eine Variation des Elektrophils reagieren. Aus den unterschiedlichen Steigungen ergeben sich im linearen Bereich der Freien-Enthalpie-Beziehungen verschiedenartige Reaktivitäts-Selektivitäts-Relationen (Abb. 12). Das Bis(p-methoxyphenyl)carbenium-Ion reagiert beispielsweise nur wenig rascher mit 2-Methyl-2-buten als mit Isobuten. Mit zunehmender Elektrophilie des Carbenium-Ions wächst der Reaktivitätsunterschied der beiden π-Nucleophile zunächst (zunehmende Selektivität), bevor bei Annäherung an die Diffusionsgrenze die Selektivität wieder abnimmt.

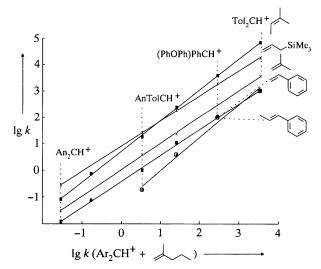



Abb. 12. Geschwindigkeitskonstanten für die Reaktionen von Diarylcarbenium-Ionen mit verschiedenen Doppelbindungssystemen (CH₂Cl₂, -70 °C).

Eine zweimalige Umkehr der Reaktivitäts-Selektivitäts-Beziehung erfolgt bei der Paarung 2-Methyl-2-buten/Allyltrimethylsilan. Wenig reaktive Carbenium-Ionen reagieren rascher mit Allyltrimethylsilan als mit 2-Methyl-2-buten (Abb. 12). Mit zunehmender Reaktivität der Carbenium-Ionen nimmt die Selektivität ab, und es kommt zur Kreuzung der beiden Korrelationsgeraden; bei weiterer Erhöhung der Elektrophilie nimmt die Selektivität dann zugunsten des 2-Methyl-2-butens zu. Bei der Verwendung sehr starker Elektrophile nimmt schließlich die Selektivität wegen der Annäherung an die Diffusionsgrenze wieder ab (in Abb. 12 nicht gezeigt). Ein ähnliches Verhalten findet man bei der Paarung Styrol/ $\beta$ -Methylstyrol. Wenig elektrophile

Carbenium-Ionen reagieren rascher mit Styrol. Bei Erhöhung der Elektrophilie nimmt der Reaktivitätsunterschied ab, und das Bis(*p*-methylphenyl)carbenium-Ion reagiert mit beiden Nucleophilen gleich rasch. Bei weiterer Zunahme der Elektrophilie steigt die Reaktionsgeschwindigkeit der methylierten Verbindung stärker an, so daß in Konkurrenzexperimenten mit dem unsubstituierten Diphenylcarbenium-Ion *trans-β*-Methylstyrol gegenüber Styrol um den Faktor 4.4 bevorzugt wird^[17b]. In diesem Bereich nimmt die Selektivität proportional zur Reaktivität zu, bei weiter steigender Reaktivität sinkt sie dann jedoch wieder, da beim Erreichen der Diffusionsgrenze die beiden Nucleophile gleich rasch reagieren.

Diese Beispiele verdeutlichen die Problematik einer Ein-Parameter-Nucleophilieskala. Bezieht man eine Nucleophiliereihe beispielsweise auf das Bis(p-methoxyphenyl)carbenium-Ion als Referenzelektrophil, findet man die Reaktivitätsabstufungen  $\beta$ -Methylstyrol < Styrol und 2-Methyl-2-buten < Allyltrimethylsilan. Bei Verwendung eines stärkeren Elektrophils (Ph₂CH⁺) findet man dagegen die Reihungen Styrol <  $\beta$ -Methylstyrol und Allyltrimethylsilan < 2-Methyl-2-buten, und zwischen starken Nucleophilen wie reaktiven Enolethern vermag Ph₂CH⁺ überhaupt nicht zu differenzieren [27]. Auch für einfache Elektrophil-Nucleophil-Kombinationen sind konstante Selektivitätsbeziehungen somit nicht streng erfüllt, wenn eine größere strukturelle Vielfalt von Elektrophilen und Nucleophilen zugelassen wird.

Während das Problem diffusionskontrollierter Reaktionen dadurch umgangen werden kann, daß zur Charakterisierung starker Nucleophile entsprechend schwache Elektrophile verwendet werden, zeigen die diskutierten Beispiele, daß auch bei den hier behandelten Elektrophil-Nucleophil-Kombinationen ein Parameter zur Charakterisierung der Nucleophilie nicht ausreichend ist. Es muß vielmehr berücksichtigt werden, daß in bestimmten Fällen auch die relative Stärke von Nucleophilen vom Elektrophil abhängt.

#### 4.2. Korrelationsanalyse

Angesichts der in Abschnitt 4.1 demonstrierten Überschneidungen von Korrelationslinien erscheint es zweckmäßig, die Konstruktion von Elektrophilie- und Nucleophilieskalen nicht auf die Zwei-Parameter-Gleichung von Ritchie [Gl. (b)] zu gründen, sondern auch den unterschiedlichen Steigungen der Korrelationsgeraden Rechnung zu tragen.

In zahlreichen Untersuchungen der Reaktionen von Diarylcarbenium-Ionen mit Nucleophilen fanden wir, daß sich die beobachteten Geschwindigkeitskonstanten hervorragend durch Gleichung (e) beschreiben lassen^[16, 28, 35] (vgl. auch Abb. 3, 9, 12).

$$\lg k = s \lg k_0 + c \tag{e}$$

Die Größe  $\lg k_0$  (Geschwindigkeitskonstante der Reaktion des Elektrophils mit 2-Methyl-1-penten) ist ein Maß für die Stärke des Elektrophils, das Nucleophil wird durch die Größen c = 0 für 2-Methyl-1-penten) und s = 1 für 2-Methyl-1-penten) charakterisiert. Mit c > 0 sind Nucleophile gekennzeichnet, die stärker sind als 2-Methyl-1-penten $^{[92]}$ , und mit s > 1 solche, die empfindlicher auf Elektrophil-Variationen reagieren als 2-Methyl-1-penten.

Die Anwendung von Gleichung (e) auf Systeme mit großen Absolutwerten von  $\lg k_0$  (sehr starke oder sehr schwache Elektrophile) bereitet jedoch Probleme, weil sich Ungenauigkeiten in s stark auf die berechnete Geschwindigkeitskonstante auswirken. Dieses Problem vermeiden wir, indem wir Gleichung (e) durch Gleichung (f) ersetzen, in der ein Elektrophilieparameter E, ein Nucleophilieparameter N und der in Gleichung (e) eingeführte nucleophilispezifische Steigungsparameter s enthalten sind. Abweichungen zwischen den in Tabelle 16 angegebenen Werten für s und den Daten in der Literatur s ind in erster Linie auf die unterschiedliche Referenztemperatur zurückzuführen.

$$\lg k = s(E+N) \tag{f}$$

Da die meisten für die Ausgleichsrechnung eingesetzten Meßgrößen ( $\lg k$ ) zwischen -4 und +4 liegen, wirkt sich bei Verwendung von Gleichung (f) eine Ungenauigkeit in s (=0.5-1.5)

Tabelle 16. Nucleophilieparameter für nichtprotische Lösungsmittel (20°C, in Klammern statistisch nicht abgesicherte Werte).

Nucle Kenn- ziffer	cophile Formel	Elektrophile [c] (Kennziffern)	S	N	Lit.
Alkene.	Alkine				
1	<b>/</b>	2. 4. 5. 6	$0.98 \pm 0.09$	$-2.02 \pm 0.14$	[16]
2		1, 6, 7, 9, 10, 11, 12	1.44 ± 0.02	$-0.96 \pm 0.31$	[16, 27]
3	Ph	5, 6, 7, 9, 10	$1.20 \pm 0.05$	$-0.47 \pm 0.10$	[16]
4	1-Methylcyclo- hexen	1. 6, 7. 9, 10, 12	$1.10 \pm 0.01$	$0.20 \pm 0.19$	[16, 27]
5	<b>=</b> −РЬ	2, 6, 9	$0.70 \pm 0.06$	$0.27 \pm 0.11$	[30]
6	$\checkmark$	1, 6, 7, 9, 10, 11, 12, 16, 17	$1.16 \pm 0.02$	$0.71 \pm 0.31$	[16, 27, 93]
7	Ph	6, 7, 8, 9, 10, 11, 12, 16, 17	$0.97 \pm 0.01$	$0.78 \pm 0.05$	[16, 93]
8		1, 6, 7, 8, 9, 10, 11, 12, 16, 17, 22, 23	1.00	$1.02 \pm 0.11$	[19, 27, 30, 61, 93]
9		2. 6, 9, 10, 12	$1.02 \pm 0.01$	$1.07 \pm 0.04$	[16, 95]
10		1, 2, 6, 7, 9, 10, 12, 16, 17	$0.98 \pm 0.02$	$1.12 \pm 0.09$	[16, 27, 93, 95]
11	$\supset$	1, 2, 5, 6, 7, 9, 10, 12, 24	$1.02 \pm 0.03$	$2.31 \pm 0.30$	[16, 27, 61]
Allylsila	ine, -germane und-	stannane			
12	SiMe ₂ CI	9, 22, 23, 26	$1.07 \pm 0.07$	$-0.45 \pm 0.10$	[35, 61]
13	SiPh ₃	9, 22, 23, 25, 26	$0.92 \pm 0.08$	$0.46 \pm 0.05$	[35, 61]
14	SiMe ₃	1. 7, 9, 10, 11, 12	$1.25 \pm 0.04$	$0.84 \pm 0.13$	[35, 96]
15	SiMe,	1,6, 7, 9, 10, 12, 16, 17, 23, 24, 25, 26, 41	1.01 ± 0.03	$1.62 \pm 0.23$	[16, 27, 61, 93, 97]
16	SiMe ₃	6, 9, 41	$0.90 \pm 0.05$	$2.50 \pm 0.20$	[27, 35, 97]
17	SnPh,	9, 10, 11, 12, 13, 28, 30	$0.89 \pm 0.01$	$3.29 \pm 0.17$	[36, 35, 98]
18	SiPh ₃	9. 12, 24	$0.92 \pm 0.04$	$3.68 \pm 0.17$	[35, 61]
19	GePh,	9, 10, 11, 12	$0.80 \pm 0.04$	$4.80 \pm 0.06$	[35]
20	SiMe ₃	12, 13, 27, 28, 29, 41, 42, 43	$0.89 \pm 0.03$	$4.90 \pm 0.82$	[35, 36, 97, 98]
21	SnPh ₃	12. 30	(0.82)	5.63	[35, 98]
22	SnBu ₃	12, 13, 42, 43	$0.85 \pm 0.04$	$5.72 \pm 0.55$	[35, 36,
23	SnBu ₃	13, 20, 30, 31, 33	$0.87 \pm 0.10$	7.92 ± 0.35	97] [36, 89, 96]

(Fortsetzung der Tabelle siehe nächste Seite)



Tabelle 16. (Fortsetzung)

Nucle Kenn- ziffer	eophile Formel	Elektrophile [c] (Kennziffern)	S	N	Lit.
Cilolono	1-41	***			
Silylenc 24	OSiMe ₃	6. 9, 12. 13, 19, 28, 29, 30	$0.92 \pm 0.02$	5.58 ± 0.18	[27, 36, 89, 96,
25	OSiMe ₃	13,28, 29	$0.90 \pm 0.13$	5.95 ± 0.24	98] [88, 98]
26	OSiMe,	13, 14, 30, 31, 33	$0.89 \pm 0.09$	$6.66 \pm 0.28$	[88, 89, 99]
27	Ph OSiMe ₃	13, 19, 20, 28, 30	$0.93 \pm 0.08$	$6.86 \pm 0.46$	[36, 89, 96, 98]
28	OSiMe,	13, 19, 20, 21, 30, 31, 33	$0.93 \pm 0.09$	$9.49 \pm 0.45$	[36, 89, 96, 100]
Arene	R R =				
29	Me	1, 2, 3, 4	$1.22 \pm 0.21$	-4.22 + 0.10	[38, 101
30	1,3-Me ₂	1, 2, 3, 5, 6		$-3.31 \pm 0.27$	[38, 101
31	OMe	1, 9, 12, 41		$-1.56 \pm 0.49$	[38, 97, 101]
32	1-OMe, 3-Me	1, 6, 9, 12, 41	$1.20 \pm 0.09$	$0.02 \pm 0.50$	[38, 97, 101]
33	1.3-(OMe) ₂	3. 9. 11. 12. 41. 42	$1.20 \pm 0.05$	$2.40 \pm 0.63$	[38, 97, 101]
34	1,3.5-(OMe) ₃	6. 9. 12	$1.30 \pm 0.21$	$3.40 \pm 0.45$	[38, 101
35		12. 30	(1.05)	3.86	[14, 97]
	donoren				
36	H ₃ SiPh	5,6, 7, 9		$-0.05 \pm 0.08$	[28]
37 38	HSiPh ₃ HSiMe ₂ Ph	6, 7, 9, 10, 12 6, 7, 9, 10, 12, 14, 27, 28, 29	$0.72 \pm 0.01$ $0.72 \pm 0.02$	$1.91 \pm 0.04$ $3.39 \pm 0.15$	[28] [28, 53, 98]
39	HGePh,	6, 7, 9, 12	$0.66 \pm 0.01$	$3.75 \pm 0.03$	[56]
40	HSiBu ₃	9, 10, 11, 12	$0.64 \pm 0.05$	$4.48 \pm 0.06$	[28]
41	HSnPh ₃	9, 10, 11, 12, 13	$0.56 \pm 0.01$	$5.94 \pm 0.45$	[56]
42 43	HGeBu ₃ HSnBu ₃	9, 10, 11, 12, 13 13, 21, 30, 31, 33	$0.69 \pm 0.02$	$6.32 \pm 0.15$	[56]
4.0	папьиз	15, 21, 50, 51, 55	$0.57 \pm 0.08$	$9.29 \pm 0.37$	[56, 89. 99]
44	CONH ₂	14, 18, 19, 21, 29	0.97 ± 0.07	$9.45 \pm 0.52$	[54, 55]
	Bzl				
n-Nucle 45		12 13 30 31 39	0.75 ± 0.14	5 20 ± 0.95	[14 02]
46	P(OPh) ₃ H ₂ O [a]	12. 13. 30. 31. 38 2. 5. 6, 9. 10. 12, 13. 14, 15, 18. 28, 29, 42, 43	$0.75 \pm 0.14$ $0.80 \pm 0.02$	$5.30 \pm 0.85$ $5.80 \pm 0.11$	[14, 93] [55, 72, 75, 76,
47	MeOH [a]	14. 15	(0.80)	7.73	77, 102] [103]
48	H,NNHCONH,	14, 15	(0.85)	9.39	[104]
49	F ₃ CCH ₂ NH ₂ [b]	10. 12, 14, 15, 18	$0.77 \pm 0.04$	$9.55 \pm 0.25$	[48, 76, 104]
50	P(OBu) ₃	13, 15, 20, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40	$0.70 \pm 0.15$	$10.81 \pm 0.16$	[14, 15, 93]
51	EtO ₂ CCH ₂ NH ₂	14, 15	(0.77)	11.68	[104]
52	[b] PPh ₃	13. 15. 30. 31. 32. 33.	0.80 ± 0.15	13.01 ± 0.19	[14, 15,
53	PTol,	34, 35, 36, 37, 39, 40 15, 30, 31, 32, 33, 34, 40	$0.80 \pm 0.14$	$13.43 \pm 0.44$	93] [14, 15]
54	$\binom{N}{2}$	30, 31, 32, 33, 34	$0.67 \pm 0.02$	$13.76 \pm 0.06$	[14]
55	₩ N	30, 31, 32, 33, 34	0.67 ± 0.21	$14.03 \pm 0.34$	[14]
56	Ľ-N PR∪	15 20 20 21 22 20	0.70 + 0.11	15 02 + 0.24	[14 45]
20	PBu ₃	15, 20, 30, 31, 32, 39, 40	v. /v ± 0.11	$15.93 \pm 0.34$	[14, 15]

[a] Für Geschwindigkeitkonstante pseudo-erster Ordnung mit dem Nucleophil als Solvens. [b] In Wasser. [c] Für die Formeln der Elektrophile siehe Tabelle 17.

weniger gravierend aus, da der damit zu multiplizierende Ausdruck (E+N) stets einen kleinen Absolutwert hat. Der Unterschied bei der Verwendung von Gleichung (e) bzw. (f) läßt sich graphisch veranschaulichen (Abb. 13). Falls die auf der Abszisse eingetragene Elektrophilieskala gegeben ist, erhielte man die Nucleophilieparamter c nach Gleichung (e) aus den teilweise weit außerhalb des Meßbereichs liegenden Schnittpunkten der Korrelationsgeraden mit der Vertikalen bei  $E=\lg k_0=0$ . Nach Gleichung (f) ergibt sich der Nucleophilieparameter N dagegen aus den üblicherweise im Meßbereich liegenden Schnittpunkten der Korrelationsgeraden mit der durch  $\lg k=0$  definierten Horizontalen, d. h. er ist identisch mit dem Negativen des E-Werts desjenigen Elektrophils, mit dem das betreffende Nucleophil mit der Geschwindigkeitskonstante k=1 reagiert.

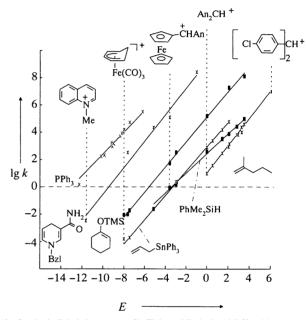



Abb. 13. Geschwindigkeitskonstanten für Elektrophil-Nucleophil-Kombinationen bei 20 °C. Graphische Darstellung für 6 der 56 durch die Tabellen 16 und 17 erfaßten Korrelationen.

Für die Ausgleichsrechnung wurde die Elektrophilie E des Bis(p-methoxyphenyl)methyl-Kations auf 0 und der Steigungsparameter s des 2-Methyl-1-pentens auf 1 festgelegt. Nun wurden zunächst die detailliert untersuchten Kombinationen von Diarylcarbenium-Ionen mit Nucleophilen (lg k) einer "Leastsquares"-Anpassung unterzogen. Der so erhaltene Parameter-Satz wurde durch weitere Systeme über eine Minimierung des Abweichungsquadrats logarithmierter, beobachteter und errechneter Geschwindigkeitskonstanten ergänzt, wodurch der in Tabelle 16 wiedergegebene Datensatz erhalten wurde. Als Standardtemperatur für die Korrelationen wurde 20°C gewählt. Falls Reaktionen bei einer anderen Temperatur untersucht wurden und Aktivierungsparameter nicht bekannt sind, erfolgte die Umrechnung auf 20 °C durch Abschätzung der Aktivierungsentropie und der daraus mit lg k ermittelten Aktivierungsenthalpie (siehe Abschnitt 3.5).

Da die Art des Lösungsmittels nur einen geringen Einfluß auf die Geschwindigkeiten der meisten hier behandelten Elektrophil-Nucleophil-Kombinationen hat (siehe Abschnitt 3.2), wer-

den Solventien in Tabelle 16 im allgemeinen nicht erwähnt. Nur bei den n-Nucleophilen, deren Reaktivität häufig in protischen Solventien untersucht worden ist, findet sich ein Hinweis, wenn sich die angegebenen Nucleophilieparameter auf ein protisches Lösungsmittel beziehen.

Abbildung 13 illustriert 6 der 56 aus der Korrelationsanalyse erhaltenen Ausgleichsgeraden. Im gesamten Reaktivitätsbereich – von sehr langsamen Reaktionen ( $k \approx 10^{-5}$  L mol $^{-1}$  s $^{-1}$ ) bis zu schnellen ( $k \approx 5 \times 10^7$  L mol $^{-1}$  s $^{-1}$ ) – gelten lineare Beziehungen. Erst bei Annäherung an die Diffusionsgrenze kommt es zu Abweichungen von der Linearität (siehe Abschnitt 4.1). Die Reihe der kationischen Elektrophile reicht vom hochreaktiven Bis(p-chlorphenyl)methyl-Kation (p $K_{R^+} = -14$ ) $^{[105]}$ , für dessen Generierung sehr starke Lewis- oder Brønsted-Säuren erforderlich sind, bis zum N-Methylchinolinium-Ion (p $K_{R^+} \approx 16.5$ ) $^{[106]}$ , das selbst in verdünnter Natronlauge noch als Kation vorliegt. Einen ähnlichen Reaktivitätsbereich deckt man mit den Nucleophilen ab, die vom wenig nucleophilen Toluol über Alkylethylene und Enolether bis zu den stark nucleophilen Aminen und Phosphanen reichen.

Sterische Effekte, die die Geschwindigkeiten dieser Reaktionen ebenfalls beeinflussen, wurden bei unserer Analyse vernachlässigt, da sie angesichts des riesigen Reaktivitätsbereichs meist nur kleine Korrekturglieder darstellen. Um auf eine explizite Behandlung der sterischen Effekte vorläufig verzichten zu können, wurden allerdings Triarylcarbenium-Ionen aus unserer Analyse ausgeklammert, denn sie reagieren wegen ihrer sterischen Abschirmung deutlich langsamer als entsprechend ihrer Lewis-Acidität zu erwarten wäre^[28, 107].

Trägt man die gegenüber Wasser gemessenen Geschwindigkeitskonstanten  $k_w$  pseudo-erster Ordnung (Tabelle 13) gegen die Elektrophilieparameter E der Tabelle 17 auf, ergibt sich die in Abbildung 14 gezeigte lineare Korrelation, von der nur der Wert für das  $\alpha$ -Methoxybenzyl-Kation signifikant abweicht und die durch (g) beschrieben werden kann (r = 0.996, 13 Punkte). Mit

$$E = 1.24 \lg k_w - 5.80$$
 (k_w aus Tabelle 13) (g)

ihrer Hilfe lassen sich aus den  $k_w$ -Werten die Elektrophilieparameter E grob abschätzen, wobei die Grenzen dieser Methode durch die Streuung der Punkte um die Ausgleichsgerade in Abbildung 14 illustriert werden. Da die in Tabelle 13 wiedergegebe-

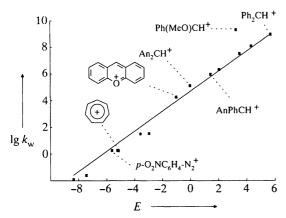



Abb. 14. Korrelation zwischen den Geschwindigkeitskonstanten der Reaktionen von Elektrophilen mit Wasser (Geschwindigkeitskonstanten pseudo-erster Ordnung, Tabelle 13) und den Elektrophilieparametern der Tabelle 17.

Tabelle 17. Elektrophilieskala für nichtprotische Lösungsmittel (20 °C)

Elek Kenn- ziffer	trophile Formel	Nucleophile [c] (Kennziffern)	E	Lit.
Benzhy	dryl-Kationen			
	CH,			
	x	Y		
1	X,Y = CI,CI	2, 4, 6, 8, 10, 11, 14, 15, 29, 30, 30, 31, 32	5.96 ± 0.41	[27, 38, 101]
2	н,н	1, 5, 9, 10, 11, 29, 30, 46	5.71 ± 0.21	[16, 27, 30, 72, 95, 101]
3	F,F	29, 30, 33	$5.20 \pm 0.56$	[101]
4 5	F,H Me,H	1, 29 1, 3, 11, 30, 36, 46	$5.37 \pm 0.09$ $4.33 \pm 0.12$	[16, 101] [16, 27, 28, 72 101]
6	Me,Me	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 24, 30, 32, 34, 36, 37, 38, 39, 46	3.51 ± 0.19	[16, 19, 27, 28, 30, 56, 72, 101
7	OPh,H	2, 3, 4, 6, 7, 8, 10, 11, 14, 15, 36, 37, 38, 39	$2.82 \pm 0.06$	[16, 19, 28, 35 56]
8	OPh,Me	7, 8	$2.11 \pm 0.05$	[16, 19]
9	OMe.H	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 46	2.07 ± 0.19	[16, 19, 27, 28 30, 35, 38, 56, 72]
10	OMe,Me	2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 15, 17, 19, 37,	$1.45 \pm 0.10$	[16, 19, 28, 35 48, 56, 72]
11	OPh,OMe	38, 40, 41, 42, 46, 49 2, 6, 7, 8, 14, 17, 19, 33, 40, 41, 42	$0.54 \pm 0.09$	[16, 19, 28, 35 56, 97]
12	OMe,OMe	2, 4, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 22, 24, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 45, 46, 49	0	[16, 19, 28, 35 38, 48, 56, 72, 93, 96, 97, 101
13	NMe ₂ , NMe ₂	17, 20, 22, 23, 24, 25, 26, 27, 28, 41, 42, 43, 45, 46, 50, 52	$-7.45 \pm 0.44$	[36, 56, 72, 88 93]
	nd Tropylium-I	onen		
14	$\bigcirc$	26, 38, 43, 44, 46, 47, 48, 49, 51	$-5.14 \pm 0.33$	[53, 54, 77, 99 103, 104]
15		→NMe ₂ 46, 47, 48, 49, 50, 51, 52, 53, 56	$-8.36 \pm 0.27$	[15, 77, 103, 104]
	x-(	$\odot$		
16	X = Cl	6, 7, 8, 10, 15	$3.28 \pm 0.42$	[93]
17	Н	6, 7, 8, 10, 15	$2.92 \pm 0.28$	
	cyclische Katior			
18	CTi	44, 46, 49	$-0.99 \pm 0.63$	[54, 76]
19	+ N Me	24, 27, 28, 44	$-7.63 \pm 0.44$	[54, 96, 100]
20	Me Me _n N	23, 27, 28, 50, 56	$-9.67 \pm 0.60$	[15, 96]
21	+ N Me	28, 43, 44	$-11.65 \pm 0.4$	[54, 99, 100]
Alkoxv	carbenium-Ione	n.		
ony	X CH* OMe			
	X =			22
22 23	Ph Tol	8, 12, 13 8, 12, 13, 15	$3.26 \pm 0.10$ $2.04 \pm 0.11$	[61] [61]
24	An	11, 15, 18	$0.45 \pm 0.24$	

(Fortsetzung der Tabelle siehe nächste Seite)

Tabelle 17. (Fortsetzung)

Elekt Kenn- ziffer	rophile Formel	Nucleophile [c] (Kennziffern)	E	Lit.				
Carbony	l-Lewis-Säure-k							
25 26	p-ClC ₆ H ₄ [a] Ph [a]	13, 15 12, 13, 15	$1.03 \pm 0.60$ $0.69 \pm 0.60$					
Übergan	Übergangsmetall-komplexierte Carbokationen							
	CHR Fe							
	R =							
27 28	Me Ph	20, 38 11, 17, 20, 24, 25, 27, 38, 46	$-2.91 \pm 0.05$ $-2.92 \pm 0.42$					
29	An	20, 24, 25, 38, 44. 46	$-3.70 \pm 0.37$	[55, 75, 98]				
	R M (Y) (CO)							
30	M (Y) (CO) $R = H,$ $M = Fe,$	17, 21, 23, 24, 26, 27, 28, 33, 35, 43, 45, 50,	$-8.00 \pm 0.47$	[14, 89, 98]				
31	Y = CO R = 2-OMe. M = Fe,	52, 53, 54, 55, 56 23, 26, 28, 43, 45, 50, 52, 53, 54, 55, 56	$-9.17 \pm 0.33$	[14, 89]				
32	Y = CO R = 6-Me, M = Mn.	50, 52, 53, 54, 55, 56	$-12.27 \pm 0.4$	[14]				
	Y = NO							
	M (Y) (CO),							
33	M = Fe, Y = CO	23, 26, 28, 43, 52, 53, 54, 55	$-9.88 \pm 0.29$	[14, 89]				
34	M = Mn, Y = NO	50, 52, 53, 54, 55	$-10.20 \pm 0.1$	[14]				
	2+ M							
35	M = Fe	50, 52	$-6.21 \pm 0.15$	[14]				
36	Ru	50, 52	$-8.21 \pm 0.13$					
37	Os	50, 52	$-9.03 \pm 0.01$					
38	7	45, 50	$-5.12 \pm 0.31$	[14]				
39	Mn(CO) ₃	50, 52, 56	$-8.98 \pm 0.23$	[14]				
40		TO TO TO TO		5. 0				
40	Cr (CO),	50, 52, 53, 56	$-9.14 \pm 0.34$	[14]				
Diazoniu								
	$R = N_2^{\dagger}$ $R = N_2^{\dagger}$							
41		15. 16. 20. 31. 32. 33	$-2.64 \pm 0.56$	[97]				
42	4-NO ₂ [b] H [b]	20, 22, 33, 46 20, 22	$-5.62 \pm 0.9$ $-8.11 \pm 1.51$	[97, 102] [97]				

[a] In Dichlormethan. [b] In Acetonitril. [c] Für die Formeln der Nucleophile siehe Tabelle 16.

nen  $k_{\rm w}$ -Werte teilweise mit Ritchies  $k_0$ -Werten identisch sind, stellt Gleichung (g) die Verknüpfung unserer E-Skala mit Ritchies Elektrophiliereihe her.

Aus der Überlappung der Datensätze der Tabellen 12 und 17 errechnet man die Korrelationsgleichung (h), mit der Kane-Maguires  $k_{\rm rel}$ -Werte für Metallkomplexe (Tabelle 12) in die Elektro-

philieparameter E umgerechnet werden können. Da die  $k_{\rm rel}$ -Werte der Tabelle 12 und die entsprechenden E-Werte der Tabelle 17 großenteils auf denselben Meßdaten beruhen, ist die Angabe eines Korrelationskoeffizienten für Gleichung (h) nicht sinnvoll.

$$E = 1.38 \lg k_{rel} - 18.2 \quad (\lg k_{rel} \text{ aus Tabelle 12})$$
 (h)

In gleicher Weise errechnet man aus der Überlappung der Einträge in den Tabellen 7 und 8 einerseits und in Tabelle 16 andererseits die Gleichung (i), die die Verbindung der Nucleophiliereihe von Sweigart/Kane-Maguire^[14] mit der hier vorgestellten *N*-Skala herstellt.

$$N = 1.51 \lg k + 7.53$$
 (k aus Tabellen 7, 8) (i)

Schließlich erhält man aus dem Vergleich der Einträge in Tabelle 16 und Tabelle 1 aus Lit. [11] die Beziehung (k), die nun Ritchies  $N_+$ -Skala an die  $N_+$ Skala der Tabelle 16 anbindet.

$$N = 1.20 N_{+} + 6.18 \tag{k}$$

Verwendet man für die Berechnung der Geschwindigkeitskonstanten nach Gleichung (f) Nucleophilieparameter, die aus den Beziehungen (i) und (k) stammen, erreicht man die beste Fehlerkompensation, wenn als Steigungsparameter s=0.66 [Gl. (i)] bzw. 0.83 [Gl. (k)], d. h. die Kehrwerte der Steigungen in diesen Gleichungen, eingesetzt werden.

#### 5. Voraussagbarkeit polarer organischer Reaktionen

Nimmt man an, daß Gleichung (f) auch für die bisher nicht untersuchten Kombinationen der in Tabellen 16 und 17 angeführten Nucleophile und Elektrophile gültig ist, lassen sich aus ihr die Geschwindigkeitskonstanten für 2408 Elektrophil-Nucleophil-Kombinationen berechnen. Durch die Einbeziehung der Ritchie- und Sweigart/Kane-Maguire-Skalen über die Gleichungen (g)–(k) sowie durch die Berücksichtigung der extrapolierten Nucleophilieparameter der Tabellen 2, 3 und 6 wird das Voraussagepotential erheblich erweitert.

Welche Elektrophil-Nucleophil-Kombinationen treten bei 20 °C ein? In Abbildung 15 sind die Reaktionspartner so eingetragen, daß nebeneinanderstehende Elektrophil-Nucleophil-Paare die Beziehung E = -(5 + N) erfüllen, d. h. Elektrophilieund Nucleophilieskala sind gegenläufig angeordnet. Für Elektrophil-Nucleophil-Paare, die auf gleicher Höhe stehen, ergibt sich nach Gleichung (f):  $\lg k = -5 s$ . Da für die meisten Nucleophile 0.6 < s < 1.2 gilt (Tabelle 16), erwartet man für nebeneinander stehende Elektrophil-Nucleophil-Paare Kombinationsgeschwindigkeitskonstanten von 10⁻³ bis 10⁻⁶ L mol⁻¹ s⁻¹ bei 20 °C. Bei einer Konzentration der Überschußkomponente von 1 mol L⁻¹ entspricht dies Halbwertszeiten von 12 min bis 8 d. In erster Näherung ist daher zu erwarten, daß Elektrophile mit denjenigen Nucleophilen bei 20°C reagieren, die in Abbildung 15 tiefer als sie stehen. Es ist klar, daß dies nur eine Vororientierung sein kann und daß für präzisere Voraussagen Gleichung (f) herangezogen werden muß.

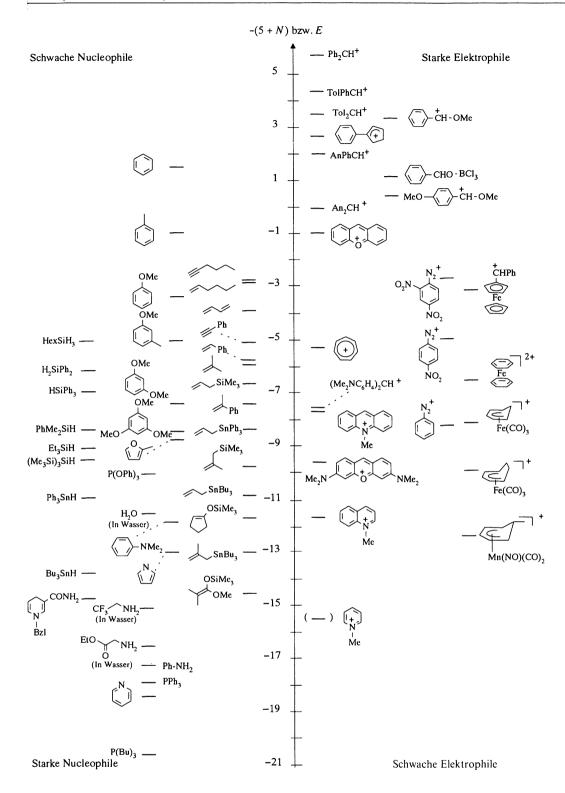



Abb. 15. Wer mit wem? Gegenüberstellung der gemittelten Nucleophilie- und Elektrophiliereihe.

Einige Beispiele sollen das Vorgehen erläutern:

Anisol steht in Abbildung 15 höher als das Tropylium-Ion, so daß eine rasche Reaktion unwahrscheinlich ist. Nach Gleichung (f) errechnet man eine Geschwindigkeitskonstante von  $10^{-8}$  Lmol⁻¹ s⁻¹, in Einklang mit der Beobachtung, daß diese Reaktion bei Raumtemperatur nicht eintritt. Auch beim Erhitzen von Tropyliumtetrachloroaluminat mit Anisol auf 85 °C konnten keine Substitutionsprodukte erhalten werden, während die Umsetzung von Tropyliumchlorid mit Anisol nach fünfstün-

digem Erhitzen auf 85–90 °C 0.8 % p-Anisylcycloheptatrien lieferte^[108]. Mit Allylsilanen^[109], Isobuten und  $\alpha$ -Methylstyrol^[110] dagegen reagiert Tropyliumtetrafluoroborat bei Raumtemperatur glatt, wie nach Abbildung 15 und den Tabellen 2, 16 und 17 zu erwarten.

Das Tricarbonylcyclohexadienyleisen-Kation reagiert mit Silylenolethern und Allylstannanen bereits bei Raumtemperatur rasch^[111]. Zur Umsetzung mit Allyltrimethylsilan war dagegen sechsstündiges Erwärmen erforderlich^[112]. Reaktionen dieses

Kations mit alkylierten Ethylenen sind uns nicht bekannt; wenn überhaupt sollten sie nur unter schärferen Bedingungen stattfinden.

Azokupplungen mit dem Benzoldiazonium-Ion werden überlicherweise mit aromatischen Aminen oder Phenolat-Ionen durchgeführt, während Phenolether nicht reagieren. Das elektrophilere 2,4-Dinitrobenzoldiazonium-Ion reagiert jedoch auch mit Anisol, und bei Verwendung des elektronenreicheren *m*-Methylanisols gelingt auch die Umsetzung des 4-Nitrobenzoldiazonium-Ions^[113]. 1,3,5-Trimethoxybenzol kuppelt bereits mit Benzoldiazonium-Ionen^[113]. Entsprechend wurden Umsetzungen des 2,4-Dinitrobenzoldiazonium-Ions mit zahlreichen 1,1-Dialkylethylenen^[114], Styrol^[114] und Allylsilanen^[115] beschrieben, während uns die Umsetzung mit monoalkylierten Ethylenen nicht gelang.

Gleichung (f) und die vereinfachte Darstellung in Abbildung 15 ermöglichen nicht nur eine Antwort auf die Frage, ob eine Reaktion überhaupt abläuft, sondern helfen auch bei der Ermittlung von Chemoselektivitäten. Berechnet man beispielsweise lg k-Werte, die größer als acht sind, bedeutet dies eine Annäherung an die Diffusionsgrenze und somit die Abnahme oder das Verschwinden von Selektivitäten im Fall konkurrierender Reaktionen.

Wie aus der Herleitung hervorgeht, werden durch diese Analyse lediglich die kinetischen Aspekte von Elektrophil-Nucleophil-Kombinationen berücksichtigt. Thermodynamische Gegebenheiten bleiben außer acht, und es ist bekannt, daß vor allem bei den Kombinationen von Elektrophilen mit n-Nucleophilen häufig eine ungünstige Gleichgewichtslage das Ablaufen der aus kinetischen Gründen erwarteten Reaktion verhindert.

#### 6. Schlußfolgerungen und Ausblick

Pearsons 25 Jahre zurückliegende Aussage, daß es nicht möglich sei, Geschwindigkeiten nucleophiler Substitutionen quantitativ vorauszusagen, sofern Substrate mit stark unterschiedlichen Eigenschaften eingesetzt werden^[8], ist auch heute noch aktuell. Nach wie vor ist eine umfassende Theorie für Elektrophil-Nucleophil-Reaktionen nicht in Sicht.

Wir zeigten jedoch in dieser Übersicht, daß die konstanten Selektivitätsbeziehungen, die von Ritchie anfang der siebziger Jahre entdeckt und von Sweigart und Kane-Maguire weiterentwickelt wurden, mit geringfügigen Modifikationen in weiten Bereichen der Organischen und Metallorganischen Chemie gültig sind. Es sind dies insbesondere Reaktionen von kationischen Kohlenstoff-Elektrophilen mit Nucleophilen, bei denen im geschwindigkeitsbestimmenden Schritt nur eine Bindung geknüpft (keine Cycloadditionen!) und keine σ-Bindungen gebrochen werden. Die Tatsache, daß auch Hydridübertragungen (M-H-Spaltung) und Reaktionen von Metall-π-Komplexen (C-M-Spaltung) diesen einfachen Beziehungen genügen, zeigt aber, daß dies keine unabdingbaren Voraussetzungen sind. Das Verhalten von Komplexen aus Carbonylverbindungen und Lewis-Säuren (Abb. 9) deutet an, daß auch eine positive Ladung des Elektrophils nicht unbedingt erforderlich ist, und ist in Einklang mit Ritchies Beobachtung, daß Carbonsäureester oder acceptorsubstituierte Ketone konstanten Selektivitätsbeziehungen genügen^[11].

Eine schlüssige theoretische Deutung für die hier vorgestellten Reaktivitätsbeziehungen können wir derzeit nicht bieten. Nach der MO-Störungstheorie^[116] oder dem Konfigurationsmischungs-Modell von Pross und Shaik^[117] erwartet man einen Zusammenhang zwischen der Elektronenaffinität und der Reaktivität von Elektrophilen sowie zwischen dem Ionisationspotential und der Reaktivität von Nucleophilen. Für langsame Reaktionen ( $k = 10^{-4} - 10^4$  L mol $^{-1}$ s $^{-1}$ ) von Diarylcarbenium-Ionen mit  $\pi$ -Nucleophilen haben wir gezeigt, daß eine Korrelation zwischen Ionisationspotential und Nucleophile nicht besteht, selbst wenn sterische Faktoren konstant gehalten werden^[18a]. Dagegen besteht eine lineare Beziehung zwischen Kinetik ( $\Delta G^{\pm}$ ) und Thermodynamik ( $\Delta G^{0}$ ) der Elektrophil-Nucleophil-Kombinationen^[30a].

Bei schnellen Reaktionen (k  $\approx 10^8 \text{ Lmol}^{-1} \text{ s}^{-1}$ ) dagegen wird die relative Reaktivität von Enolethern vorwiegend durch ihr Ionisationspotential bestimmt und nicht durch die Thermodynamik des geschwindigkeitsbestimmenden Schritts^[27]. Der Wechsel zwischen den beiden Bereichen ließe sich durch eine Verschiebung des Übergangszustands auf der Reaktionskoordinate deuten. Nach dem Hammond-Postulat erwartet man für die schnelleren Reaktionen einen frühen Übergangszustand, was einen Zusammenhang mit der Lage der Grenzorbitale zur Folge hat. Bei den langsamen Reaktionen würde, wegen des später liegenden Übergangszustands,  $\Delta G^0$  des geschwindigkeitsbestimmenden Schritts eine entscheidende Rolle spielen. Wir haben jedoch (Abschnitt 4.1) aus dem Ausbleiben der Hammond-Krümmung auf eine gleichbleibende Lage der Übergangszustände geschlossen. Diese Annahme wird dadurch gestützt, daß die Aktivierungsentropien, die nach Houk et al. vom Ort des Übergangszustands abhängen[118], in unseren Reaktionsreihen nahezu konstant sind. Es besteht somit ein Widerspruch, den wir derzeit nicht aufzulösen vermögen.

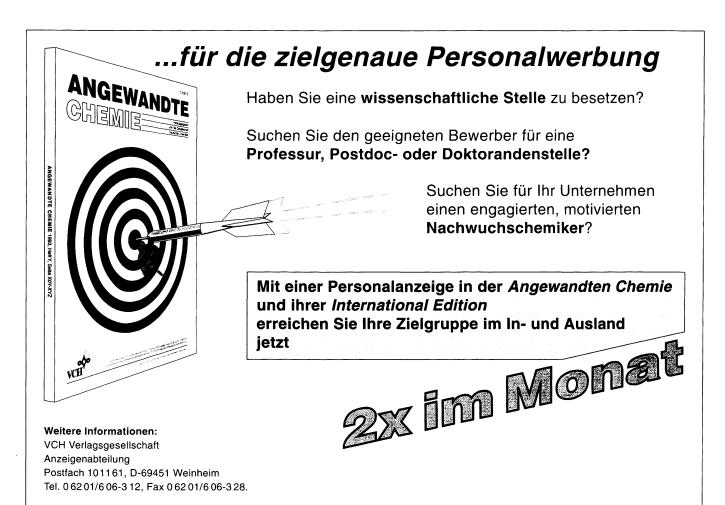
Der Nutzen der hier vorgestellten Gleichung (f) zur Voraussage der Reaktivität ist weitgehend von der Zahl der verfügbaren Reaktivitätsparameter abhängig. Wie in diesem Aufsatz gezeigt wurde, gibt es für die wichtigsten Klassen von Nucleophilen bereits verläßliche Reaktivitätsdaten. Mit den oben erwähnten (Tabellen 5 und 6) absoluten Geschwindigkeitskonstanten für den Angriff von Carbenium-Ionen an einige Arene kann nun das umfangreiche Datenmaterial über elektrophile Substitutionen an Arenen^{157b. 119]} in diese Nucleophilieskala eingebunden werden. Insbesondere die Einbeziehung der gut untersuchten Heteroarene¹⁹⁴¹ wird den Nutzen dieser Skala für die Syntheseplanung enorm steigern.

Vergleichsweise dürftig sind unsere Kenntnisse über die Stärke von Elektrophilen. Nur für wenige, z.T. aus präparativer Sicht bedeutungslose Elektrophile sind verläßliche Reaktivitätsdaten verfügbar (Tabelle 17). Für einige Elektrophile, deren Reaktionsgeschwindigkeiten in Wasser bekannt sind (Tabelle 13), lassen sich E-Parameter abschätzen, doch ist der Gültigkeitsbereich von Gleichung (g) noch unklar. Verschiedentlich wurde über einen Zusammenhang zwischen elektrophiler Reaktivität und  $pK_{R+}$ -Werten berichtet^[54, 72, 120], doch wurde in neueren Arbeiten, vor allem bei acceptorsubstituierten Carbokationen, der Zusammenhang zwischen Elektrophilie und thermodynamischer Stabilität angezweifelt^[121]. Für zahlreiche Klassen präparativ wichtiger Elektrophile gibt es bisher keine quantitativen Reaktivitätsdaten, so daß die Bestimmung weiterer Elektrophilieparameter für die Weiterentwicklung dieses Gebietes vorrangige Bedeutung hat.

1008 Angew. Chem. 1994, 106, 990 - 1010

AUFSÄTZE

Ein Großteil der hier zusammengefaßten Ergebnisse wurde von Mitgliedern dieser Arbeitsgruppe in der zurückliegenden Dekade erarbeitet. Ihnen gilt unser besonderer Dank. Der Deutschen Forschungsgemeinschaft danken wir für die bisherige Unterstützung unserer Arbeiten und die weitere Förderung im Rahmen des Projekts "Elektrophilie". Den Brückenschlag zu den metallorganischen Elektrophilen ermöglichte die Volkswagen-Stiftung mit ihrem Schwerpunktprogramm "Metallorganische Reaktionen für die organische Synthese". Schließlich danken wir dem Fonds der chemischen Industrie für die Forschungsbeihilfe und für die Gewährung eines Kekulé-Stipendiums an M. Patz.


Eingegangen am 8. August 1993 [A 13]

- G. N. Lewis, Valence and the Structure of Atoms and Molecules, The Chemical Catalog Co., 1923.
- [2] a) J. N. Brønsted, Recl. Trav. Chim. Pays-Bas 1923, 42, 718-728; b) T. M. Lowry, Chem. Ind. (London) 1923, 42, 43-47.
- [3] a) C. K. Ingold, Recl. Trav. Chim. Pays-Bas 1929, 48, 797--812; b) C. K. Ingold, J. Chem. Soc. 1933, 1120-1127; c) C. K. Ingold, Chem. Rev. 1934, 15, 225-274.
- [4] C. G. Swain, C. B. Scott, J. Am. Chem. Soc. 1953, 75, 141-147.
- [5] a) J. O. Edwards, J. Am. Chem. Soc. 1954, 76, 1540 1547; b) J. O. Edwards, ibid. 1956, 78, 1819 - 1820.
- [6] A. J. Parker, Chem. Rev. 1969, 69, 1-32,
- [7] J. F. Bunnett, Annu. Rev. Phys. Chem. 1963, 14, 271–290; siehe auch: Nucleo-philicity (Adv. Chem. Ser. 215) (Hrsg.: J. M. Harris, S. P. McManus), American Chemical Society, Washington DC, 1987.
- [8] R. G. Pearson, H. Sobel, J. Songstad, J. Am. Chem. Soc. 1968, 90, 319 326.
- [9] C. D. Ritchie, Acc. Chem. Res. 1972, 5, 348-354.
- [10] C. D. Ritchie. Can. J. Chem. 1986, 64, 2239 2250.
- [11] C. D. Ritchie, J. Am. Chem. Soc. 1975, 97, 1170-1179.
- [12] a) C. D. Ritchie, J. E. Van Verth, P. O. I. Virtanen, J. Am. Chem. Soc. 1982, 104, 3491-3497; b) C. D. Ritchie, ibid. 1984, 106, 7187-7194.
- [13] C. D. Ritchie, M. Sawada, J. Am. Chem. Soc. 1977, 99, 3754-3761
- [14] L. A. P. Kane-Maguire, E. D. Honig, D. A. Sweigart, Chem. Rev. 1984, 84, 525-543.
- [15] T. J. Alavosus, D. A. Sweigart, J. Am. Chem. Soc. 1985, 107, 985-987.
- [16] a) H. Mayr. R. Schneider, U. Grabis, Angew. Chem. 1986, 98, 1034-1036; Angew. Chem. Int. Ed. Engl. 1986, 25, 1017-1019; b) J. Am. Chem. Soc. 1990, 112, 4460-4467.
- [17] a) H. Mayr, R. Pock, Chem. Ber. 1986, 119, 2473 2496; b) R. Pock, H. Mayr, ibid. 1986, 119, 2497 - 2509.
- [18] a) H. Mayr, Angew. Chem. 1990, 102, 1415-1428; Angew. Chem. Int. Ed. Engl. 1990, 29, 1371-1384; b) H. Mayr, R. Schneider, C. Schade, Makromol. Chem. Macromol. Symp. 1988, 13/14, 43-59.
- [19] H. Mayr, R. Schneider, C. Schade, J. Bartl, R. Bederke, J. Am. Chem. Soc. 1990, 112, 4446-4454
- [20] C. D. Ritchie, G. A. Skinner, V. G. Badding, J. Am. Chem. Soc. 1967, 89, 2063 - 2071
- [21] G. R. John, L. A. P. Kane-Maguire, J. Chem. Soc. Dalton Trans. 1979, 873-878.
- [22] R. A. McClelland, N. Banait, S. Steenken, J. Am. Chem. Soc. 1986, 108, 7023-7027.
- [23] H. Mayr, R. Pock, Tetrahedron 1986, 42, 4211-4214.
- [24] J. P. Richard, W. P. Jencks, J. Am. Chem. Soc. 1982, 104, 4689-4691.
- [25] R. A. McClelland, V. M. Kanagasabapathy, N. S. Banait, S. Steenken, J. Am. Chem. Soc. 1991, 113, 1009-1014.
- [26] R. Ta-Shma, Z. Rappoport. J. Am. Chem. Soc. 1983, 105, 6082-6095.
- [27] J. Bartl, S. Steenken, H. Mayr, J. Am. Chem. Soc. 1991, 113, 7710-7716.
- [28] H. Mayr, N. Basso, G. Hagen, J. Am. Chem. Soc. 1992, 114, 3060–3066.
- [29] J. G. Atton, L. A. P. Kane-Maguire, J. Chem. Soc. Dalton Trans. 1982, 1491– 1498.
- [30] a) H. Mayr, R. Schneider, B. Irrgang, C. Schade, J. Am. Chem. Soc. 1990, 112, 4454-4459; b) B. Irrgang, H. Mayr, Tetrahedron 1991, 47, 219-228; c) M. Roth, C. Schade, H. Mayr, J. Org. Chem. 1994, 59, 169-172; d) H. Mayr, J. L. Gonzalez, K. Lüdtke, Chem. Ber. 1994, 127, 525-531.
- [31] H.-J. Schneider, N. Becker, G. Schmidt, F. Thomas, J. Org. Chem. 1986, 51, 3602-3607.
- [32] Vgl. hierzu beispielsweise H. C. Brown, M. Borkowski, J. Am. Chem. Soc. 1952, 74, 1894–1902.
- [33] G. Melloni, G. Modena, U. Tonellato, Acc. Chem. Res. 1981, 14, 227-233.
- [34] a) S. E. Denmark, T. Wilson, T. M. Willson, J. Am. Chem. Soc. 1988, 110, 984–986; b) G. E. Keck, M. B. Andrus, S. Castellino, ibid. 1989, 111, 8136–8141.

- [35] G. Hagen, H. Mayr, J. Am. Chem. Soc. 1991, 113, 4954-4961; Substituenteneinflüsse an Silicium: M. A. Brook, A. Neuy, J. Org. Chem. 1990, 55, 3609-2616.
- [36] M. Patz, H. Mayr, Tetrahedron Lett. 1993, 34, 3393-3396.
- [37] a) L. A. P. Kane-Maguire, C. A. Mansfield, J. Chem. Soc. Dalton Trans. 1976,
  2192-2196; b) G. R. John, L. A. P. Kane-Maguire, Inorg. Chim. Acta 1981,
  48, 179-183; c) G. R. John, C. A. Mansfield, L. A. P. Kane-Maguire, J. Chem. Soc. Dalton Trans. 1977, 574-578.
- [38] H. Mayr, J. Bartl, G. Hagen, Angew. Chem. 1992, 104, 1689-1691; Angew. Chem. Int. Ed. Engl. 1992, 31, 1613-1615.
- [39] a) G. A. Olah, Acc. Chem. Res. 1971, 4, 240 248; b) L. M. Stock, H. C. Brown, Adv. Phys. Org. Chem. 1963, 1, 35 154.
- [40] T. Ghazy, L. A. P. Kane-Maguire, J. Organomet. Chem. 1988, 338, 47-53.
- [41] J. G. Atton, L. A. P. Kane-Maguire, J. Organomet. Chem. 1982, 226, C43-C45.
- [42] L. A. P. Kane-Maguire, T. I. Odiaka, S. Turgoose, P. A. Williams, J. Chem. Soc. Dalton Trans. 1981, 2489 – 2495.
- [43] D. J. Evans, L. A. P. Kane-Maguire, Inorg. Chim. Acta 1982, 62, 109-112.
- [44] T. I. Odiaka, L. A. P. Kane-Maguire, J. Chem. Soc. Dalton Trans. 1981, 1162-1168
- [45] T. I. Odiaka, J. Organomet. Chem. 1987, 321, 227-235.
- [46] T. I. Odiaka, J. Chem. Soc. Dalton Trans. 1986, 2707-2710.
- [47] a) T. I. Odiaka, R. van Eldik, J. Organomet. Chem. 1992, 425, 89-97; b) J. Chem. Soc. Dalton Trans. 1991, 2215-2218.
- [48] R. A. McClelland, V. M. Kanagasabapathy, N. S. Banait, S. Steenken, J. Am. Chem. Soc. 1992, 114, 1816-1823.
- [49] C. D. Ritchie, J. Am. Chem. Soc. 1972, 94, 3275-3276.
- [50] K. Hillier, J. M. W. Scott, D. J. Barnes, F. J. P. Steele, Can. J. Chem. 1976, 54, 3312-3314.
- [51] J. E. Dixon, T. C. Bruice, J. Am. Chem. Soc. 1971, 93, 6592-6597.
- [52] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH, Weinheim, 1988, S. 205–207.
- [53] a) J. Chojnowski, W. Fortuniak, W. Stańczyk, J. Am. Chem. Soc. 1987, 109, 7776-7781; b) T. G. Traylor, G. S. Koermer, J. Org. Chem. 1981, 46, 3651-3656; c) L. M. McDonough, Dissertation, University of Washington, 1960; d) N. Deno, G. Saines, M. Spangler, J. Am. Chem. Soc. 1962, 84, 3295-3297; c) G. Giese, A. Heesing, Chem. Ber. 1990, 123, 2373-2380; f) G. J. Karabatsos, M. Tornaritis, Tetrahedron Lett. 1989, 30, 5733-5736; g) S. Bradamante, G. A. Pagani, J. Chem. Soc. Perkin Trans. 2 1986, 1035-1046; h) T. G. Traylor, W. Hanstein, H. J. Berwin, N. A. Clinton, R. S. Brown, J. Am. Chem. Soc. 1971, 93, 5715-5725; i) É. A. Karakhanov, E. A. Dem'yanova, E. A. Viktorova, Dokl. Akad. Nauk SSSR 1977, 233, 369-370; Dokl. Chem. Engl. Transl. 1977, 144-146.
- [54] J. W. Bunting, Bioorg. Chem. 1991, 19, 456-491; siehe auch S. Fukuzumi, Adv. Electr. Transfer 1992, 2, 67-175.
- [55] C. A. Bunton, N. Carrasco, F. Davoudzadeh, W. E. Watts, J. Chem. Soc. Perkin Trans. 2 1980, 1520–1528.
- [56] a) H. Mayr, N. Basso, Angew. Chem. 1992, 104, 1103-1105; Angew. Chem. Int. Ed. Engl. 1992, 31, 1046-1048; b) N. Basso, S. Görs, E. Popowski, H. Mayr, J. Am. Chem. Soc. 1993, 115, 6025-6028.
- [57] a) A. Pross, Adv. Phys. Org. Chem. 1977, 14, 69-132; b) R. Taylor, Electrophilic Aromatic Substitution, Wiley, Chichester, 1990, Kap. 11.
- [58] a) O. Exner, J. Chem. Soc. Perkin Trans. 2 1993, 973-979; b) C. D. Johnson, B. Stratton, ibid. 1988, 1903-1907.
- [59] B. Giese, Angew. Chem. 1977, 89, 162 173; Angew. Chem. Int. Ed. Engl. 1977, 16, 125 - 136.
- [60] E. Buncel, H. Wilson, J. Chem. Educ. 1987, 64, 475–480.
- [61] G. Gorath, H. Mayr, unveröffentlicht.
- [62] T. L. Amyes, W. P. Jencks, J. Am. Chem. Soc. 1989, 111, 7888-7900.
- [63] P. R. Young, W. P. Jencks, J. Am. Chem. Soc. 1977, 99, 8238-8248.
- [64] S. Steenken, R. A. McClelland, J. Am. Chem. Soc. 1989, 111, 4967-4973.
- [65] S. Steenken, J. Buschek, R. A. McClelland, J. Am. Chem. Soc. 1986, 108, 2808–2813.
- [66] T. Okuyama, Acc. Chem. Res. 1986, 19, 370-376.
- [67] T. Okuyama, N. Haga, S.-y. Takane, K. Ueno, T. Fueno, Bull. Chem. Soc. Jpn. 1991, 64, 2751 – 2756.
- [68] J. P. Richard, M. E. Rothenberg, W. P. Jencks, J. Am. Chem. Soc. 1984, 106, 1361-1372.
- [69] T. L. Amyes, J. P. Richard, M. Novak, J. Am. Chem. Soc. 1992, 114, 8032-8041.
- [70] T. L. Amyes, J. P. Richard, J. Am. Chem. Soc. 1990, 112, 9507-9512.
- [71] J. P. Richard, T. L. Amyes, I. W. Stevens, *Tetrahedron Lett.* 1991, 32, 4255–4258.
- [72] R. A. McClelland, V. M. Kanagasabapathy, N. S. Banait, S. Steenken, J. Am. Chem. Soc. 1989, 111, 3966-3972.
- [73] a) Lit. [52], S. 19-21; b) I. L. Bagal, S. A. Skvortsov, A. V. El'tsov, J. Org. Chem. USSR (Engl. Transl.) 1978, 14, 328-337.
- [74] C. D. Ritchie, D. J. Wright, D.-S. Huang, A. A. Kamego, J. Am. Chem. Soc. 1975, 97, 1163-1170.
- [75] C. A. Bunton, N. Carrasco, W. E. Watts, J. Organomet. Chem. 1977, 131, C21–C25.

- [76] R. A. McClelland, N. Banait, S. Steenken, J. Am. Chem. Soc. 1989, 111, 2929 2935.
- [77] C. D. Ritchie, H. Fleischhauer, J. Am. Chem. Soc. 1972, 94, 3481-3483.
- [78] N. J. Pienta, R. J. Kessler, J. Am. Chem. Soc. 1992, 114, 2419-2428.
- [79] J. W. Bunting, M. M. Conn, Can. J. Chem. 1990, 68, 537-542.
- [80] J. W. Bunting, J. L. Bolton, Tetrahedron 1986, 42, 1007-1019.
- [81] J. W. Bunting, N. P. Fitzgerald, Can. J. Chem. 1985, 63, 655-662.
- [82] J. W. Bunting, V. S. F. Chew, N. P. Fitzgerald, A. Gunasekara, H. T. P. Oh, *Bioorg. Chem.* 1984, 141–157.
- [83] J. W. Bunting, V. S. F. Chew, G. Chu, J. Org. Chem. 1982, 47, 2303-2307, 2308-2312.
- [84] D. Ostović, I.-S. H. Lee, R. M. G. Roberts, M. M. Kreevoy, J. Org. Chem. 1985, 50, 4206-4211.
- [85] C. A. Bunton, S. K. Huang, C. H. Paik, Tetrahedron Lett. 1976, 1445-1448.
- [86] J. J. Steffens, D. M. Chipman, J. Am. Chem. Soc. 1971, 93, 6694-6696.
- [87] B. Giese, Acc. Chem. Res. 1984, 17, 438-442.
- [88] M. Müller, H. Mayr, unveröffentlicht.
- [89] H. Mayr, K.-H. Müller, D. Rau, Angew. Chem. 1993, 105, 1732-1734; Angew. Chem. Int. Ed. Engl. 1993, 32, 1630-1632.
- [90] R. Ta-Shma, Z. Rappoport, Tetrahedron Lett. 1982, 23, 781-784.
- [91] J. P. Richard, T. L. Amyes, T. Vontor, J. Am. Chem. Soc. 1992, 114, 5626-5634.
- [92] Wegen der Unterschiede in der Steigung s gilt dies streng nur für den Vergleich der Reaktivität von Nucleophilen gegenüber einem Elektrophil, das mit 2-Methyl-1-penten bei -70°C mit einer Geschwindigkeit von lg k=0 reagiert.
- [93] B. Irrgang, H. Mayr, unveröffentlicht.
- [94] A. R. Katritzky, R. Taylor, Adv. Heterocycl. Chem. 1990, 47, 1-467.
- [95] Y. Wang, L. M. Dorfman, Macromolecules 1980, 13, 63-65.
- [96] M. Patz, H. Mayr, unveröffentlicht.
- [97] K. Grimm, M. Hartnagel, H. Mayr, unveröffentlicht.
- [98] D. Rau, H. Mayr, unveröffentlicht.
- [99] H. Lies. H. Mayr. unveröffentlicht.
- [100] S. Fukuzumi, M. Fujita, S. Noura, J. Otera, Chem. Lett. 1993, 1025-1028.
- [101] J. Bartl, Dissertation, Medizinische Universität, Lübeck, 1990.
- [102] C. D. Ritchie, D. J. Wright, J. Am. Chem. Soc. 1971, 93, 6574-6577.

- [103] C. D. Ritchie, P. O. I. Virtanen, J. Am. Chem. Soc. 1972, 94, 4963-4965.
- [104] C. D. Ritchie, P. O. I. Virtanen, J. Am. Chem. Soc. 1973, 95, 1882 1889.
- [105] N. C. Deno, J. J. Jaruzelski, A. Schriesheim, J. Am. Chem. Soc. 1955, 77, 3044-3051.
- [106] J. W. Bunting, Tetrahedron 1987, 43, 4277-4286.
- [107] a) C. Schade, H. Mayr, Makromol. Chem. Rapid Commun. 1988, 9, 477 482;
   b) J.-P. Dau-Schmidt, H. Mayr, Chem. Ber. 1994, 127, 205 212.
- [108] D. Bryce-Smith, N. A. Perkins, J. Chem. Soc. 1962, 5295 5297.
- [109] G. Picotin, P. Miginiac, Tetrahedron Lett. 1988, 29, 5897 5898.
- [110] C. Schell, E. Bäuml, H. Mayr, unveröffentlicht.
- [111] A. J. Birch, L. F. Kelly, A. S. Narula, Tetrahedron 1982, 38, 1813-1823.
- [112] L. F. Kelly, A. S. Narula, A. J. Birch, Tetrahedron Lett. 1980, 21, 871-874.
- [113] K. H. Schündehütte, Methoden Org. Chem. (Houben-Weyl) 4th ed. 1952 Bd. X/3, 1965, S. 232 ff.
- [114] a) H. Marxmeier. E. Pfeil, Chem. Ber. 1964, 97, 815-826; b) Justus Liebigs Ann. Chem. 1964, 678, 28-38.
- [115] H. Mayr, K. Grimm, J. Org. Chem. 1992, 57, 1057-1059.
- [116] a) I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976; b) R. F. Hudson, Angew. Chem. 1973, 85, 63-84; Angew. Chem. Int. Ed. Engl. 1973, 12, 36.
- [117] a) S. S. Shaik, J. Org. Chem. 1987, 52, 1563-1568; b) A. Pross, Adv. Phys. Org. Chem. 1985, 21, 99-196; c) S. S. Shaik, A. Pross, J. Am. Chem. Soc. 1989, 111, 4306-4312.
- [118] K. N. Houk, N. G. Rondan, J. Mareda, Tetrahedron 1985, 41, 1555-1563.
- [119] a) Friedel-Crafts and Related Reactions, Vol 1-4 (Hrsg.: G. A. Olah), Interscience, New York, 1963-1965; b) G. A. Olah, Friedel-Crafts Chemistry, Wiley, New York, 1973.
- [120] a) E. M. Arnett, K. Molter, J. Phys. Chem. 1986, 90, 383–389; b) Acc. Chem. Res. 1985, 18, 339–346.
- [121] a) J. P. Richard, T. L. Amyes, L. Bei, V. Stubblefield, J. Am. Chem. Soc. 1990, 112, 9513-9519; b) J. P. Richard, J. Org. Chem. 1994, 59, 25-29; c) L. J. Johnston, P. Kwong, A. Shelemay, E. Lee-Ruff, J. Am. Chem. Soc. 1993, 115, 1664-1669; d) T. L. Amyes, I. W. Stevens, J. P. Richard, J. Org. Chem. 1993, 58, 6057-6066.

