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Approximations are suggested to extend the usefulness of operational calculus in solving 
boundary-value problems of interest to the chemical engineer. General approximations 
are outlined and specific ones illustrated. The use of computing machines with operational 
calculus is RISO considered. 

Operational calculus has been found 
useful in many characteristic problems in 
chemical engineering. The applications 
considered by Marshall and Pigford (6) and 
those noted in recent annual reviews (8 to  
1 1 )  include diffusion, conduction, convection, 
distillation, kinetics, and process control. 

Unfortunately, present operational tech- 
niques are not always adequate for the very 
problems for which, in principle, operational 
calculus holds the most promise. These 
limitations are aggravated by the notorious 
difficulty encountered by the mathematician 
in establishing proofs in operational calculus 
for procedures that he suspects to be valid. 

Approximation can be used to  surmount 
some of the limitations in operational 
theory. In addition to permitting solution 
of complex and otherwise intractable 
problems, approximation may indicate 
useful simplifications that are not apparent 
from an exact solution. The use of approxi- 
mation has been rather slighted in the 
literature of operational calculus, presum- 
ably because of the taint imposed by lack 
of rigor. Although numerous specific 
examples having a physical or mathematical 
basis have been reported, only McLachlan 
(7) and Doetsch (3) have attempted to 
generalize the use of approximation, and 
then only for the limiting conditions of long 
and short times in transient problems. 

Since the purpose of this paper is to 
acquaint the chemical engineer with the 
possibilities and advantages of a mathe- 
matical technique, rather than to  develop 
new mathematics, all proofs and most 
details will be omitted. Approximations 
will generally be justified on physical 
grounds. The engineer is seldom disturbed 
by his inability to establish rigorously the 
validity or uniqueness of a solution if it 
satisfies physical tests. 

Consideration will be limited to the 
Laplace transformation, which is the most 
extensively used form of operational cal- 
culus. The use of approximation with other 
transforms is also advantageous, and 
equivalent procedures are readily developed. 

THE LAPLACE TRANSFORMATION 

If a function F ( t )  is multiplied by e-8: 
and integrated with respect to t from 
zero to infinity, a new function, f ( s ) ,  is 
obtained. This operation is called the 
Laplace transformation of F( t ) ,  and f(s) is 
called the Laplace transform; i.e., 

3 ( F ( t ) ]  = I r n e - " F ( t )  d t  = f(s) (1) 
0 

The inverse operation is designated 

Operational calculus was developed 
empirically by Heaviside as a set of rules 
of procedure. Subsequently an extensive 
theory was developed, and the mathe- 
matical foundations, limitations, and 
formal applications are well treated in 
modern texts (2, 7 ,  14). Although trans- 
forms have been derived and tabulated 
for many functions and mathematical 
operations (4) ,  problems of interest more 
ofkn  than not yield functions not to be 
found in such tables. 

Letting the transform variable, s, be 
a complex variable permits expression of 
the inverse transformation in terms of the 

Linear ordinary differential equations 
with constant coefficients are thus trans- 
formed into algebraic equations, solution 
of which followed by inversion then 
yields a solution to the differential equa- 
tion. Other operational properties permit 
simplification and solution of a few more 
complex types of differential equations. 

The transformation of simple partial 
differential equations yields ordinary 
differential equations, which may be 
easier to solve. The solution of the 
ordinary differential equation involving 
a transformed function may possibly be 
solvable by a second transformation. 

Multiplication of the transforms of two 
functions corresponds to a particular 
integration 

complex inversion integral. P - 1 <  1 L\ 1 

where 

y = a sufficiently large, fixed value of x. 
This property permits solution of certain 
integral equations as well as additional 
differential equations. 

s = x + i y  

The theorv of residues and line integrals The operation 
u 

can be used to evaluate the foregoing 
integral. In  many cases the problem is 
reduced to one of finding the singularities 
in f ( s ) .  

where 

S ( F ( t  - m)} = e-msf(s)  (8) 

The complex inversion integral can be 
written as a real integral, 

where u = real part of f(s), and v = 
imaginary part of f(s), but in this form 
the integration is generally too difficult 
to be performed analytically. 

The most important operational prop- 
erty of the Laplace transformation arises 
from the derivative 

S ( F ' ( t ) ]  = s m  - F(+O) (5) 
Differentiation of F ( t )  thus corresponds to 

F(t )  = 0 for t < 0 
permits solution of certain finite-differ- 
ence equations and finite-difference- 
differential equations such as those 
encountered in equilibrium-stage opera- 
tions. 

From these examples, several limita- 
tions on the usefulness of the operational 
method are apparent or implied: 

1. The functions encountered in the 
equations and boundary conditions must 
be transformable. 

2. The transformed equations and 
boundary conditions must be solvable. 

3. It must be possible to invert the 
transformed solution. 

multiplication of the transform- f(s) by 
s and subtraction of F(+O). Equation (5) 
in turn leads to an expressioll for the 
transform of the nth derivative: 

The restrictions On the 
transformation are not very serious and 
are satisfied by most functions encoun- 
tered in engineering problems. On the 

S(F"(t)  ] = s"f(s) - s"-'F(+O) 
- Sn-*F'(+O) - . . . - F"-'(+O) 

other hand, t he  class of equations which 
are simplified by transformation is rather 
limited. With such equations the relative 

(6) 
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advantage of the operational method over 
other classical methods depends largely on 
the nature of the boundary conditions. 
In  particular, if the values of the de- 
pendent variable to be transformed and 
its derivatives a t  t = + O  are known, the 
operational method is a t  least worth 
looking into. Thc simplification gained 
by transformation is oftcn negated by 
difficulties in inverting the transformed 
solution. 

integral, Equation (4), can be evaluated 
graphically, numerically, or by quadra- 
ture, as suggested in Problem 111. 

6. Approximate values may be used 
for the singularities when residue theory 
is used to carry out the inversion. This 
approximation is not used in any of the 
illustrative problems, 

The corresponding exact solutions are 

e - k ~  1 

c, = k,C"[----- k ,  - k ,  + "'1 k ,  - k,  (21) 

ILLUSTRATIVE PROBLEMS 

Four problems were chosen to illustrate 
the use of approximation with the 
Laplace transformation. The equations 
in the problems are streamlined by the 
implicit inclusion of physical factors and 
constants in generalized variables. 

Although the greatest utility of approx- 
imation is in complex problems that 
cannot be solved rigorously, relatively 
simple problems were deemed best for 
illustration. In  several cases the nature 
and validity of the approximations are 
apparent by direct comparison with a 
rigorous solution. The techniques used 
in these simple problems are of course 
directly applicable in more complex ones. 

APPROXIMATE INVERSION 

The inversion process may be simplified 
or expedited by the following methods, 
one or more of which are applicable in 
most problems. 

1. The transformed function may be 
expanded in series. The entire series may 
then be inverted or appropriate terms 
may be discarded before inversion. Fre- 
quently several different expansions are 
feasible, yielding solutions or indicating 
approximations of different utility. The 
use of series expansion is illustrated in 
Problems I, 11, and 111, which follow. 

2. A complicated function may be 
represented empirically by some arbi- 
trary function which is more readily 
inverted, as indicated in Problem 111. 
This method of approximation can seldom 
be justified mathematically but is worth 
trying if the solution can be tested. 
(Similarly, boundary conditions and 
generating functions may be approxi- 
mated by other functions more susceptible 
to transformation, as illustrated in 
Problem IV.) 

3. The inversion may be carried out 
only for particular or limiting values of a 
parameter, as indicated in Problems I 
and 111, or of a nontransformed inde- 
pendent variable, as indicated in Problem 
11. This procedure may be expressed 
mathematically as 

and 

c, = c, - 1cn-,kn-, . . . k,C, 
e - k ,  t 

.[ kl(kn-l-kl)(k~,-~-kl). . . ( h - k , )  

+ ..-I (23) 

In  the following approximations s 
will be treated as a real variable. 

Short-time Approximation 
For very short times 1st will be very 

large with respect to all the rate con- 
stants. Then 

Problem I 

Jeffreys (5)  has indicated the use of 
approximation in the solution of the set 
of simultaneous rate equations describing 
a radioactive decay series. He also dis- 
cusses the physical interpretation of the 
approximate results in some detail. The 
general problem is represented by the 
equations 

C, c1 -+ - 
S 

(25) 
d c i  -- = -klCl with C, = 6, at t = 0 
dt  

(12) 

S 

_ _ -  dCz - -k,C, + klC, dt (13) 

_- dC3 - - -k,C, + k2C2 (14) dt 

etc., and finally 

4. Approximate inversions for large 
and small values of t can sometimes be 
obtained by letting s assume small and 
large values, respectively; i.e., 

F( t )  E S-'(f(s)) (10) 
t - m  8-0 

and 

for the end product, which does not 
decompose. 

Transformation yields the correspond- 
ing equations Moderate-time Approximation 

Expanding the transforms in series by 
division yields a useful form for moder- 
ately short times corresponding to Is1 
greater than any k.  Thus One or both of these approximations are 

illustrated in Problems I, 11, and 111. 
Equation (10) is not valid if any of the 
singularities in f(s) occur in the half of the 
complex plane where the real value of s 
is positive. Thus formal use of this 
approximation may lead to error; how- 
ever, i t  is usually easier to detect an 
erroneous solution than to find the 
singularities. 

5.  The real form of the inversion 

a.nd 

(19) 
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. [ 1 - (kl + IC2 + k J  + . . .] (34) 
s 

(3 5) 

and 

6, = c, 1 - k , t + - -  2! 

- (Icltr + . . .] 
[ 

3!  

k2kl Cot2 c, = ___ 2! 

k,_,k,-Z . . * klCotn--l 
(n - l)! (39) 

c, = 

1 [ - ( k ,  + k2 + . . . k n - d t  + . . . 
n! 

The first terms of the series solutions are 
the very short-time solutions. The series 
themselves are obviously those obtained 
from series expansion of the exact 
solutions. Thus in this problem a short- 
time approximation of any desired 
accuracy can be obtained by letting 
/ s [  + co and dropping higher order terms. 

Long-time Approximation 
For long times s will be small with 

respect to some of the rate constants. 
If it is assumed that all the rate constants 
except kz are much larger than Is1 

C, 
k ,  

c1 + - and C, -0  (40, 41) 

and C, + C0Ckat  (42, 43) 

k C  
k3 

and C, + e-k2r  (44, 45) 

into Equation (48) and simplifying gives k2CO 
cn ---f s(s + k2) ' - G ( 1 - 7 )  

u(r,  s) [l +s 
and Cn -+ CO[l - e - k ' t ]  (46, 47) S 4; 

Equation (41) does not follow directly 
from Equation (40) but is apparent from 
Equation (12) or (20). These approximate 
solutions can, of course, be obtained from 
the exact solution. Thus the formal 
procedure used to obtain the approxima- 
tions is substantiated in this case even 
though it is not in general rigorous. 

Problem II 

The representation of a transformed 
solution by an asymptotic series to 
expedite inversion or to yield a more 
satisfactory solution upon inversion has 
been used widely. The following example 
from Carslaw and Jaeger ( I )  also illus- 
trates inversion a t  a single value of the 
untransformed variable. 

The transformed solution for the 
temperature in a long cylindrical rod, 
initially a t  zero temperature but main- 
tained a t  unit temperature a t  the surface 
after time zero, can be written in gener- 
alized terms as 

The details of the derivation of Equation 
(48) are given in reference 1. The exact 
solution is 

(49) 

Although all the terms of Equation (51) 
could be inverted, only the first term 
need be considered for short times if r 
is not too small: 

Short-time Approximation for Center 
Putting r = 0 in Equation (48) and 

then introducing the positive exponen- 
tials of the asymptotic series only in the 
denominator gives 

] (53) [l - a - . - *  1 

For short times, only the first term needs 
to be inverted and 

-1/st 

T(0, t )  g e- fi K1/4(;;) (54) 

Problem 111 

Sleicher and Churchill (19) used a 
number of techniques to invert the follow- 
ing expression for the transient tempera- 
ture of a sphere in a dispersion of spheres 
exposed to a radiant flux 

(55) 

The details of the derivation of Equation 

where a, are the roots of Jo(a,) = 0. 

Short-time Approximation 
Equation (49) is inconvenient for 

t < 0.02 because the series converges 
very slowly. For short times and large s 
only the positive exponentials of the 
asymptotic series 

are significant. Introducing these terms 

(55) and the physical significance-of the 
variables are given in the foregoing 
reference. 

Short-time Approximation 
For large s and L > 1 

(56) 
1 

s(l + di +% u(s) --+ 

Equation (56) is also obtained by letting 
L -+ 00, which corresponds to reduction 
of the problem to one of a single sphere 
in an infinite medium. 

Integral Inversion 
The inverse transform of Equation (56) 

can be written in terms of the real integral 
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The integral can be evaluated graphically 
for a series of values of t and 4. Accurate 
evaluation a t  small values of t / d  is 
difficult owing to a sharp peak in the 
integrand a t  g = 2/1 - (I/%$). This 
difficulty can be minimized by rearrang- 
ing Equation (57) as 

or by taking a mean valuc of the expo- 
nential a t  the peak; i.c., 

T Ei 1 - exp{ -$ (1 - k)} (59) 

As an example of the difficulty that can 
arise from an improper approximation, 
it will be noted that neglecting l/+ with 
respect to 2 in the denominator of the 
integrand produces a zero in the denomi- 
nator a t  y = 1 and thus makes the 
integrand infinite. 

Series Inversion 
Formally carrying 

indicated in Equation 

and inversion gives 

out the division 
(56) yields 

quite unsound mathematically, but which 
leads to a useful and verifiable result. Due 
caution should be exercised in using this 
formal procedure because a very small 
error in representing f(s) may lead to  a 
much larger error in F ( t ) .  

Long-time Approximation 
For long times and L3 >> 34, as s+ 0 

and 
3t T + -  L3 

The form of Equation (64) and hence of 
Equation (63) can also be rationalized 
physically. 

General Approximation 
It is apparent that the expression 

u = - 1 1  (- + 4-) 
s 1 + + s  L s  

yields asymptotic solutions for both long 
and short times provided that 4 > 400 
and L3 >> 34. Direct numerical compari- 
son shows that Equation (65) differs 
from Equation (55) by no more than S%, 
even in the intermediate range of real 
values of s where both the long- and short- 
time terms are appreciable. Inversion of 
Equation (65) yields 

Again an approximation which is unjusti- 
fiable mathematically appears to give a 
physically acceptable solution. 

$- ' '  '1 Problem IV 

Transient conduction in a semiinfinite 
slab with radiation and convection from 
the surface and generation of energy due 
to a chemical reaction at the surface can 
be used to illustrate the approximation of 
boundary conditions. The boundary- 
value problem can be written + --.I (61) 

Unfortunately, Equation (61) converges 
slowly except for very small t .  

Parametric Approximation 
Practical values of the parameter 4 

were found to exceed 400. Fo r+  > 400, 
4 is never more than 2.5% of (1 + 
4 + 4s) for all real values of s from 
zero to infinity. If 4 is neglected in 
(1 + 6 + +s), the inversion is readily 
performed and gives 

(62) T = 1 - ,ff/@ 

Equation (62), which can also be ob- 
tained by physical reasoning, is found 
to differ from Equation (57) by less than 
3% for all t at + = 400. This is an 
example of a formal procedure which is 

h[T,  - TI + c(Ta4 - T4)  + Ae-B/T 

dT 
dx 

+ k -  = 0 at x = 0 (68) 

and 

2' = 0 at, t = 0 (69) 

Approximate Representation of Radiation 

replaced by a linear expression 
The awkward radiation term can be 

h,[T, - 7'1 = n[Ta4 - T 4 ]  (70) 
where 

h, = d" + TI[T,' + T 2 ]  (71) 

For any limited range of T the variation 
of h, will be slight and a mean valuc can 
be selected which leads to only a slight 
error. 

Approximate Representation of Generation 
Similarly, over a moderate range of 

temperature the exponential expression 
can be replaced by a linear expression 

ile-"?' = a  - + b7' (72) 
with the coefficients a and b chosen 
empirically. 

Solution 
After introduction of the approximate 

boundary conditions the problem can be 
rewritten in the following simplified form: 

(73) 

T = 0 at e = 0 (74) 

T , - T + z = O  at Z = O  (75) 

where 

dT 

Z = ( h  + h,  - b ) ~ / k  (76) 

di = (h  + h ,  - b) dtlkpc (77) 
and 

The rewritten problem can be trans- 
formed and the transformed problem 
solved to give 

7Toe- 4:z 

44 + 1) 
1c = (79) 

Equation (79) is then inverted to give 

MACHINE INVERSION 

A general card program has been 
developed ( I S )  for the inversion of the 
Laplace transform of functions which 
can be expressed as a rational algebraic 
function a(s ) /b ( s )  with a numerator of 
any order up to fifteen and a denominator 
of any order up to sixteen. A further 
restriction is that the poles of the function 
be of the following types: first-order 
poles, real or complex; second-order poles, 
real only; and first-, second-, or third- 
order poles a t  the origin. The process 
described requires that the poles be 
known in advance. However, the roots 
of such equations can also be found to 
any desired degree of accuracy by routine 
machine computation, and so the entire 
operation can be programmed. 

Page 292 A.1.Ch.E. Journal June, 1957 



Obviously, any function which can be 
approximated by a function of this form 
can be inverted on a computing machine. 
A program to evaluate the constants in 
such an empirical equation can also be 
written. Thus the entire process of 
empirical representation, evaluation of 
singularities, and inversion can be carried 
out formally by machine. Since the use 
of the empirical representation is not 
rigorous, the solution ~~--ould have to be 
tested. 

CONCLUSIONS 

Complex Laplace transiorms can be 
inverted approximately by :L number of 
simple techniques. Althongh the validity 
of the techniques is not easy to establish 
rigorously, the results can usually be tested 
by physical reasoning. By the use of 
empirim1 representations, dmost any func- 
tion can be inverted on :i computing 
machine. These techniqucs evtend the 
usefulness of operat,ional calculus to many 
complex problems in chemical engineering. 
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NOTATION 

C = heat capacity 
CO 

C,(t) 

= original concentration of com- 

= concentration of nth compo- 
ponent 1 

nent 

c(s )  = transformed concentration of 

erfc (x) = complementary error function 

h = heat transfer coefficient for 

h, = heat transfer coefficient for 

I&) = Jo(ix) 

nth component 

of x 

convection 

radiation 

Jo(z)  = Bessel function of first kind 
and zero order of z 

J l ( z )  = Bessel function of first kind 
and first order of x 

K1,,(x) = modified Bessel function of 
second kind and one-quarter 
order of x 

k = thermal conductivity 
k ,  = rate constant for nth reaction 
L = dimensionless distance between 

spheres 
r = fraction of radius 
S = variable of transformation 
t = time 
T 

x + 
P 

= temperature or diinerisionless 

= temperature of surroundings 
= transformed temperature or 

dimensionless temperature 
= distance from surface 
= dimensionless parameter 
= density 

temperature 
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Fluidization and Sedimentation 
of Spherical Particles 

THOMAS J .  HANRATTY and ABDEMANNAN BANDUKWALA 

University of Illinois, Urbana, Illinois 

Data are presented in support of an expression describing the relation between the 
sedmenting velocity or the fluidizing velocity and the fraction voids. This expression 
which contains no empirical constants may be obtained by considering a particle in a 
fluid having the average properties of the suspension. Stokes’s law is used to calculate 
the force on the particle, and an equation derived by Vand is used to describe the viscosity 
of the suspension. The equation based on this model is valid for particle Reynolds numbers 
less than 0.07. The model may be used as an approximation of bed behavior at higher 
Reynolds numbers by application of a correction to Stokes’s law. 

single The particle steady state in a settling fluid or rate the of fluid a Drag force on particle u, = JW (3) 
velocity necessary to suspend a single 
particle may be described by equating 
the force of gravity to the viscous drag 
of the fluid. For spherical particles 

= CD’pu,Zf%) (I) For low settling rates (Re, < 0.1) the 
drag coefficient CD may be described by 
Stokes’s law, and Equation (3) becomes Force of gravity 
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