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Nonlinear dynamics of surface steps
Joachim Krug

1.1
Introduction

Surface steps are key elements in the dynamics of a crystal surface below

its thermodynamic roughening transition, because they constitute long-lived

structural defects which are nevertheless highly mobile and prone to strong

fluctuations [1]. The description of surface morphology evolution in terms of

the thermodynamics and kinetics of steps goes back at least half a century [2].

During the past few decades the subject has experienced a significant revival

due to the availability of imaging methods such as scanning tunneling mi-

croscopy, which allow for a direct visualization of step conformation and step

motion on the nanoscale; see [3–7] for recent reviews. In this chapter I will

focus specifically on cases where steps have been found to display complex

dynamic behavior, such as oscillatory shape evolution under constant driving.

The examples to be discussed below can be naturally organized according to

the underlying topology of the step configurations: We first consider driven

single-layer islands (closed step loops), and then vicinal surfaces (arrays of

parallel steps). A certain familiarity with the basic thermodynamics and kinet-

ics of crystal surfaces is assumed; for an elementary introduction the reader

may consult [8].

1.2
Electromigration-driven islands and voids

Electromigration is the directed transport of matter in a current-carrying ma-

terial, which is caused (primarily) by the scattering of conduction electrons

off defects such as interstitials or atoms adsorbed on the surface (henceforth

referred to as adatoms), see Fig.1.1 for a sketch. Much of the work on elec-

tromigration has been motivated by its importance as a damage mechanism

limiting the lifetime of integrated circuits [9]. Because electromigration forces

are small compared to the typical energy barriers involved in the thermal dif-

http://arxiv.org/abs/0810.5749v1
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Fig. 1.1 Schematic of the microscopic origin of the electromigration force: Conduction elec-
trons scattering off an adatom give rise to a transfer of momentum in the direction of the cur-
rent flow.

fusion of atoms, the direct observation of electromigration effects in real time

on atomistic length scales is difficult (see, however, [10] for recent progress in

this direction). In this chapter the electromigration force will be used as a con-

ceptually simple way of driving a system of surface steps out of equilibrium,

giving rise to surprisingly complex dynamical behavior.

1.2.1
Electromigration of single layer islands

Two-dimensional single-layer islands are the simplest nanoscale structures

that appear on a surface during the early stages of thin film growth, when

the amount of deposited material is a small fraction of a monolayer [5]. Be-

cause of their small size, such islands display considerable shape fluctuations

already in thermal equilibrium, which may cause diffusive motion of the is-

land as a whole [4]. The electromigration-induced drift of single-layer islands

on the Si(111) surface was observed experimentally by Métois and collabora-

tors in 1999 [11]. In the following we summarize recent theoretical work on

this problem, which is based on a continuum formulation due to Pierre-Louis

and Einstein [12].

We focus here on the simplest case where the motion of atoms is restricted to

the boundary of the islands, such that the island area is conserved1. Then the

local normal velocity vn of the island boundary satisfies a continuity equation,

vn = −
∂

∂s
j =

∂

∂s
σ

[

∂

∂s
(γ̃κ)− Ft

]

, (1.1)

where s denotes the arclength measured along the island contour. The mass

current j along the island boundary is proportional to the step edge mobility σ,

and it is driven by capillary forces and the tangential (to the boundary) com-

ponent Ft of the electromigration force. The capillary force, in turn, is given

by the tangential gradient of the edge chemical potential, which is the prod-

uct of the edge stiffness γ̃ and the edge curvature κ. The stiffness γ̃ is derived

1) A nonconserved situation where the step exchanges atoms with the
terrace is treated below in Sect.1.2.4.
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Fig. 1.3 Angle enclosed by the direction of island motion and the direction of the applied force
as a function of the scaled island radius for S = 2. The transitions between the different
phases in Fig.1.2 are manifest as slope discontinuities in this graph.

Beyond the linear instability of the circular solution one finds a family of sta-

tionary shapes which are elongated in the direction of the force and become

increasingly sensitive to breakup with increasing size [15, 16].

The effect of crystalline anisotropy in the mobility σ was explored, mostly

numerically, in [15, 17]. Using the expression [18]

σ(θ) = σ0[1 + S cos2(nθ)], (1.5)

where 2n denotes the number of symmetry axes, a surprisingly rich phase

diagram of migration modes was obtained in the plane spanned by the

anisotropy strength S and the dimensionless island radius R0 = R/lE for

the case of sixfold anisotropy (n = 3), see Fig.1.2. In these calculations the

force was oriented along a direction of maximal mobility.

For small R0 the dynamics is dominated by capillarity and the island shape

is close to the equilibrium shape. The island moves at constant speed in the

direction of the applied force (ss = straight stationary motion). With increas-

ing size a bifurcation to a regime of oblique stationary (os) motion occurs, in

which the symmetry with respect to the force direction is spontaneously bro-

ken. A suitable order parameter for this bifurcation is the angle between the

direction of force and the direction of motion (Fig.1.3). Increasing the radius

further another bifurcation occurs to a phase in which the obliquely moving

island displays periodic shape oscillations (the oo phase). At smaller values

of S the island performs an oscillatory zig-zag motion which is directed along

the applied force on average (Fig.1.4).

A clear signature of the transition from stationary oblique to oscillatory be-

havior shows up in the angle of island migration (Fig.1.3). In addition, we
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Fig. 1.4 Oscillatory island motion in the zig-zag phase of the phase diagram. Parameters are
R0 = 3.5, S = 0.5 for the upper panel and R0 = 3.5, S = 1 for the lower panel. All lengths are
measured in units of lE.
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Fig. 1.5 Period τ of the shape oscillation near the transition from the oo to the os phase.
Different curves show results obtained for different numbers N of discretization points in the
numerical solution, with N increasing from right to left (from [16]).

observe that the period τ of the shape oscillation diverges as the critical ra-

dius Roo
0 of the transition is approached from above (Fig.1.5). Although the

data show some dependence on the number of discretization points, a power

law fit indicates that the period diverges as

τ ∼ (R0 − Roo
0 )−2.5. (1.6)

Increasing the island size further the oscillations become increasingly irreg-

ular. This is illustrated in Fig.1.6 by the time series of the island perimeter.

The uppermost curve in the figure displays large scale fluctuations which can

be traced back to reversals of the direction of island motion which occur at
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Fig. 1.6 Time series of the island perimeter, measured in units of lE. From bottom to top, pa-
rameters are S = 2, R0 = 5; S = 5, R0 = 5; and S = 5, R0 = 6.5. Time is measured in units of
tE = l4

E/(σ0γ̃).
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Fig. 1.7 Fourier spectrum of the island perimeter time series for S = 3 and R0 = 6, plotted as
a function of the period τ = 2π/ω (from [16]).

irregular intervals [17]. The Fourier spectrum of such a time series is broad

and shows clear signatures of period doubling (Fig.1.7).
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2 8100 3000 100
0

100

200

300

400

Fig. 1.8 Comparison of island shape evolution obtained from KMC simulations (left and mid-
dle columns) and numerical solution of the continuum model (right column). The simulated
islands consist of 1000 atoms in the right column and 4000 atoms in the middle column. The
left and right columns correspond to a temperature of T = 700 K, while in the middle column
T = 500 K. In the left and middle columns lengths are measured in units of the lattice con-
stant, in the right column in units of lE.

1.2.2
Continuum vs. discrete modeling

We have seen in the preceding section that electromigration-driven islands

display a number of features which are consistent with the behavior of a low-

dimensional, non-linear dynamical system. This is remarkable, since physi-

cally such an island consists of a large number of atoms which move stochas-

tically under the influence of thermal fluctuations and a very small systematic

force.

In order to determine whether the phenomena predicted on the basis of the

deterministic continuum model (1.1) persist also under experimentally realis-

tic conditions, extensive Kinetic Monte Carlo (KMC) simulations were carried

out using a lattice model that has been shown to provide an accurate repre-

sentation of metal surfaces2 such as Cu(100) [19]. In a suitably chosen range

of parameters, a regime of oscillatory motion could be identified which shows

dynamic behavior in good, essentially quantitative agreement with the con-

tinuum model (Fig.1.8).

2) See [5, 7] for an overview of similar models, and [12, 20] for earlier
KMC-simulations of island electromigration.
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Fig. 1.9 Phase diagram of island migration modes obtained by numerical solution of the con-
tinuum equations for a mobility and stiffness of fourfold crystalline anisotropy. The temperature
is measured in Kelvin, and the anisotropy increases with decreasing temperature. Tempera-
ture was varied in steps of 100 K. Each rectangle corresponds to a single value of R0 and T,
which is located in the center of the rectangle. The cases T = 500K and T = 700K, which
correspond to the KMC simulations, were explored with higher resolution. The abbreviations
used for the different phases are explained in Fig.1.2 (from [16]).

For the comparison to KMC simulations, realistic expressions for the step

edge mobility σ and the stiffness γ̃ in (1.1) were derived and implemented.

Both of these quantities display a fourfold anisotropy on the fcc(100) surface.

A rough exploration of the full phase diagram, conducted within the contin-

uum model, is depicted in Fig.1.9. Since the physical parameter controlling

the anisotropy is the temperature T, with lower temperatures corresponding

to more pronounced anisotropy, the temperature axis in Fig.1.9 replaces the

anisotropy axis in Fig.1.2. The regions displaying oscillatory behavior with-

out leading to island breakup are much more limited than in the case of six-

fold anisotropy. In particular, at T = 500 K no oscillatory regime was found

in the continuum model, despite the fact that oscillations are seen in the KMC

simulations at this temperature (middle column in Fig.1.8). This is one of the

indications of a breakdown of the continuum description at low temperatures

which were reported in [19].

1.2.3
Nonlocal shape evolution: Two-dimensional voids

Formally, the island electromigration problem described in the preceding sec-

tions is largely equivalent to the problem of electromigration of cylindrical
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Fig. 1.10 Comparison between the electromigration problem for islands (left) and voids (right).
Arrows indicate the flow of the electric current. The shape evolution problem on the left is lo-
cal, whereas on the right one has to solve a nonlocal moving boundary value problem.

voids in a thin metallic film. The formation, migration and shape evolution

of such voids plays an important part in the failure of metallic interconnects

in integrated electronic circuits [9]. In this context the size scale of interest is

usually in the range of micrometers, rather than nanometers, but on the level

of the continuum description on which (1.1) is based this difference is imma-

terial.

A more relevant distinction is illustrated in Fig.1.10: In the case of an is-

land on top of a thick metallic substrate, the disturbance of the electric current

distribution in the bulk due to the presence of the island can be neglected,

and correspondingly the force Ft in (1.1) can be approximated by the simple

constant expression (1.2). On the other hand, in the presence of an insulating

void in a current-carrying film, the current is obviously forced to flow around

the void. As a consequence, the current distribution, and hence the distribu-

tion of electromigration forces, is strongly dependent on the void shape itself,

and the shape evolution becomes a non-local moving boundary value prob-

lem for the electric potential [18]. It is possible to interpolate between the two

cases depicted in Fig.1.10 by considering a conducting void and varying the

conductivity ratio between the interior and the exterior regions [14].

Oscillatory shape evolution of two-dimensional voids was first observed

numerically by Gungor and Maroudas [21]. They considered edge voids lo-

cated at the boundary of a two-dimensional conducting strip. In the presence

of crystalline anisotropy in the mobility of adatoms along the inner void sur-

face, a transition from stationary to oscillatory behavior occurs with increasing

electromigration force or void area. Subsequent detailed analysis has shown

that this transition has the character of a Hopf bifurcation [22]. The exper-

imental signature of oscillatory void evolution are rapid oscillations in the

resistance of the conductor, which have indeed been reported in the litera-

ture [23].
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F
V

Fig. 1.11 Sketch of a vacancy island migrating by internal terrace diffusion. The drift force
leads to a net transport of material from the left to the right, which implies island migration in
the opposite direction.

1.2.4
Nonlocal shape evolution: Vacancy islands with terrace diffusion

The exchange of atoms between the step and the surrounding terraces is an-

other source of nonlocality in the motion of the steps, since it necessitates

the solution of a moving boundary value problem for the concentration of

adatoms on the terraces [2,8]. A particular case in this class of problems is the

interior model for the electromigration of vacancy islands introduced in [12],

and studied in detail in [16, 24].

As illustrated in Fig.1.11, one considers a vacancy island (i.e. a surface re-

gion which is one atomic height lower than the surrounding terrace) bounded

by an ascending step. Atoms can detach from the step and diffuse across the

island, but an energy barrier prevents atoms from entering the island from

the exterior terrace. This leads to a moving boundary value problem in the

bounded interior domain, where the adatom concentration ρ(~r, t) satisfies the

drift-diffusion equation

∂ρ

∂t
= D∇2ρ −

D

kBT
~F · ∇ρ (1.7)

with appropriate boundary conditions at the step edge (see [8] for a general

discussion). If the exchange of atoms with the step edge is rapid, so that

thermal equilibrium is maintained at the boundary at all times, a circular sta-

tionary solution drifting at constant speed against the force direction can be

found [12].

From the perspective of nonlinear dynamics, an intriguing feature of this

problem is that the circular solution is linearly stable, although numerical sim-

ulation of the fully nonlinear evolution shows that the circle develops an in-

stability (leading eventually to the pinching off of a small island) under finite

perturbations [24]. The critical perturbation strength needed to trigger the
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bunching
meandering

Fig. 1.12 Schematic of the two main morphological instabilities of a vicinal surface.

instability decreases as the dimensionless island size, defined in this case by

R0 =
R

ξ
, ξ =

kBT

|~F|
, (1.8)

is increased by increasing either the force or the island size. A similar scenario

combining linear stability with nonlinear instability was previously found in

the problem of two-dimensional void migration [18, 25] as well as in the dy-

namics of ionization fronts [26, 27].

The effects of crystalline anisotropy in this problem have not been explored

so far. However, in view of the results described in the preceding subsections,

it seems likely that oscillatory and other modes of complex shape evolution

may arise in this case as well.

1.3
Step bunching on vicinal surfaces

A vicinal surface is obtained by cutting a crystal at a small angle relative to

a high symmetry orientation, such that a staircase of well-separated, atomic

height steps forms. When such an array of steps is set into motion by growing

or sublimating the crystal, or by applying an electromigration force on the

adatoms, a variety of patterns emerges.

Quite generally, the pattern formation process can be understood as a com-

petition between the destabilizing effects of the external forces, and thermody-

namic forces arising from the step free energy and repulsive step-step interac-

tions, which act to restore the equilibrium state of straight, equidistant steps.

The resulting instability scenarios have been studied extensively on the level

of linear stability analysis, see e.g. [28]. The two basic modes of instability are

illustrated in Fig.1.12: In step bunching the individual steps remain straight but
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Fig. 1.13 Sketch of a one-dimensional step train. Under sublimation, ascending steps move to
the right.

the initially homogeneous step train breaks up into regions of high step den-

sity (bunches) separated by wide terraces. By contrast, in step meandering the

individual steps become wavy; often the repulsive interactions between the

steps then force the different steps to meander in phase, such that an overall

periodic surface corrugation perpendicular to the direction of vicinality re-

sults. In some cases step bunching and step meandering have been observed

to coexist [29, 30].

In the following some recent results on the nonlinear evolution of step

bunches will be summarized, focusing again on instances of complex temporal

behavior of the step configurations. For a discussion of the nonlinear dynam-

ics of meandering steps we refer to [31].

When step bunching is the dominant instability, the steps can (to a first ap-

proximation) be assumed to be straight, and the problem reduces to the one-

dimensional motion and interaction of point-like steps. Figure 1.13 illustrates

the situation for the case of sublimation, where ascending steps move (on aver-

age) to the right. The equations of motion for the steps can be obtained from

the solution of a one-dimensional moving boundary value problem for the

adatom concentration on the terraces. This procedure has been reviewed in

detail elsewhere [8]. Here we start the discussion directly from the nonlinear

equations of motion, regarded as a (physically motivated) many-dimensional

dynamical system.

1.3.1
Stability of step trains

As a first orientation, suppose the velocity ẋi of the i’th step is the sum of con-

tributions f+ and f−, which are functions of the length of the leading terrace

(in front of the step) and the trailing terrace (behind the step), respectively,

such that

dxi

dt
= f+(xi+1 − xi) + f−(xi − xi−1) (1.9)
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for the N steps i = 1, ..., N, and periodic boundary conditions are employed.

Then a uniform step train of equally spaced steps,

x
(0)
i = il + vt (1.10)

is always a solution, with l denoting the step spacing and v = f+(l) + f−(l)
the step speed. A straightforward linear stability analysis of (1.9) reveals that

the solution (1.10) is stable if

d

dx
[ f+(x)− f−(x)]|x=l > 0, (1.11)

and step bunching occurs when this condition is violated.

There are obviously different ways in which such an instability can be re-

alized. One possibility is that both contributions on the right hand side of

(1.9) are increasing functions of the terrace size, but the contributon from the

trailing terrace is larger, i.e. the step motion is primarily driven from behind.

This is the scenario first described by Schwoebel and Shipsey [32, 33], who

pointed out that the preferential attachment/detachment of adatoms from/to

the lower terrace bordering a step leads to step bunching during sublimation.

The mechanism for electromigration-induced step bunching first described by

Stoyanov [34] is of a similar nature. We will return to this case in the following

sections.

A different scenario was investigated by Kandel and Weeks [35, 36], who

considered a class of one-sided models with f− ≡ 0 and a nonmonotonic func-

tion f+ of the form

f+(x) = cx(x0 − x). (1.12)

This work was motivated by the physics of impurity-induced step bunching

during growth, where steps are slowed down by impurities that accumulate

on the terraces [37,38]. Larger terraces have been exposed to the impurity flux

for longer times, which leads to a decrease of the step speed and ultimately to

its vanishing when x = x0. The equidistant step train is stable for l < x0/2

and unstable for l > x0/2. Perturbing a single step in an unstable equidistant

step train leads to a disturbance wave which (because of the one-sided nature

of the dynamics) travels backwards, leaving behind a frozen configuration of

step bunches separated by terraces of size x0. Varying the initial step spac-

ing one finds a sequence of spatial bunching patterns, which can be periodic,

intermittent or chaotic3.

3) A similar scenario has been found in a model for sand ripple forma-
tion in an oscillatory flow [39].
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1.3.2
Strongly and weakly conserved step dynamics

An important global characteristic of the step dynamics is the overall subli-

mation (or growth) rate of the crystal, which is given by

R =
1

N ∑
i

dxi

dt
. (1.13)

We distinguish between strongly conserved step dynamics in which R = 0,

and weakly conserved dynamics where R is nonzero but independent of the

step configuration4. The latter case is realized during growth at relatively low

temperature, where desorption of adatoms can be neglected and therefore the

growth rate is completely determined by the external deposition flux [41].

A generic model that incorporates the strongly and weakly conserved situ-

ation is given by

dxi

dt
= γ+ · (xi+1 − xi) + γ− · (xi − xi−1) + U · (2 fi − fi+1 − fi−1) (1.14)

with

fi =
l3

(xi − xi−1)3
−

l3

(xi+1 − xi)3
. (1.15)

These equations were first written down by Liu and Weeks [42] as a model for

electromigration-induced step bunching in the presence of sublimation5. In

contrast to (1.9), here γ± and U are constant coefficients multiplying the terms

in parenthesis. Comparison with (1.9) shows that f± are linear functions with

slopes γ±, such that the stability condition reads γ+ > γ−. In addition to the

linear terms depending on the nearest neighbor step positions, (1.14) contains

nonlinear next-nearest-neighbor contributions arising from repulsive thermo-

dynamic step-step interactions of entropic and elastic origin [3,8], which drive

the relaxation of the step train to its (equidistant) equilibrium shape.

The sublimation rate for the model (1.14) is R = (γ+ + γ−)l, hence for

strongly conserved dynamics one has to set γ+ = −γ−. This case is realized in

electromigration-induced step bunching without growth or sublimation [43].

In the following we will focus on the weakly conserved case, where R > 0. It

is then convenient to normalize the time scale such that γ+ + γ− = 1, and to

introduce the asymmetry parameter b through [44]

γ+ =
1 − b

2
, γ− =

1 + b

2
, (1.16)

4) In [40] only the strongly conserved case is referred to as “conserved”.
The reason for our choice of nomenclature will become clear below
in Sect.1.3.6.

5) We will see below in Sect.1.3.6 that the weakly conserved form (1.14)
is in fact not really appropriate in the presence of sublimation.
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Fig. 1.14 Sketch of a moving step bunch.

such that step bunching occurs for b > 0. Together Eqs.(1.14,1.15,1.16) define

a two-parameter family of nonlinear many-body problems which have been

investigated in detail in [44–46]. In the following two sections some pertinent

results of this study will be summarized.

1.3.3
Continuum limit, traveling waves and scaling laws

The analysis of the nonlinear dynamics of step bunches is greatly simplified if

it is possible to perform a continuum limit of the problem, thus passing from

the discrete dynamical system (1.14) to a partial differential equation [8, 47].

Coarse graining the discrete equations of motion (1.14), one arrives first at a

“Lagrangian” continuum description for the step positions xi or the terrace

sizes li = xi+1 − xi by converting the layer index i into a continuous surface

height h = ih0 (here h0 denotes the height of an elementary step) [43, 48]. In

a second step this is transformed into an “Eulerian” evolution equation for

the surface height profile h(x, t) or, equivalently, the step density m = ∂h/∂x ,

which reads, for the model (1.14) [44, 45]

∂h

∂t
+

∂

∂x

[

−
b

2m
−

1

6m3

∂m

∂x
+

3U

2m

∂2(m2)

∂x2

]

+ 1 = 0. (1.17)

To unburden the notation, we have normalized vertical and horizontal lengths

by setting h0 = l = 1. In the weakly conserved case the evolution law has the

form of a continuity equation, with the corresponding current given by the

terms inside the square brackets.

The solution h(x, t) = x/l − t of (1.17) is linearly unstable for b > 0. The

physically relevant nonlinear solutions take the form of a generalized travel-

ing wave,

h(x, t) = f (x − Vt)− Ωt (1.18)
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N
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L

Fig. 1.15 Quantities characterizing the shape of a step bunch.

as illustrated in Fig.1.14. The conserved nature of (1.17) implies the sum rule

Ω + V = 1, (1.19)

but the individual values of the vertical and horizontal speed are not fixed

by the ansatz 6. An analysis of periodic solutions of the discrete equations of

motion shows that, under rather general conditions,

V ∼ 1/N. (1.20)

Since the mean velocity of a single step is unity in the present units, this im-

plies that bunches move more slowly than steps. Similar to cars in a traffic

jam, steps join the bunch from behind, move slowly through the bunch, and

accelerate into the outflow region which separates one bunch from the next7.

Inserting (1.18) into (1.17) one arrives at a third order nonlinear ODE, which

can, to a large extent, be handled analytically [44]. A key result are scaling

laws [50] for the shape of stationary bunches. As illustrated in Fig.1.15, the

shape can be characterized by the bunch width W and the bunch spacing L,

both of which are functions of the number N of steps in the bunch. The global

constraint on the average slope of the surface implies that L ∼ N, but the

bunch width typically scales with a sublinear power of N, which implies that

bunches become steeper as more steps are added. Related quantities of inter-

est are the minimal terrace size lmin in the bunch and the size l1 of the first

terrace in the bunch. On the basis of the continuum equation (1.17) one finds

that, asymptotically for large N [44]

W ≈ 4.1(UN/b)1/3, lmin ≈ 2.4(U/bN2)1/3, l1 ≈ (2U/bN)1/3, (1.21)

in good agreement with numerical simulations of the discrete model [45].

Note that W ∼ Nlmin, as one would expect, but l1 ≫ lmin. An experimen-

tal study of the shapes of electromigration-induced step bunches on Si(111) is

consistent with lmin ∼ N−2/3 [51].

6) For the relation of this problem to the standard velocity selection
problem for traveling waves moving into unstable states see [49].

7) Note however that traffic jams generally move in the direction oppo-
site to the traffic flow [52, 53].
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Fig. 1.16 Phase diagram for the behavior of step bunches at b = 11. The line is the linear sta-
bility limit, below which the equidistant step train is stable (full circles). In the linearly unstable
regime above this line bunches either eject no steps (open squares) or they eject one step at a
time (crosses).

1.3.4
A dynamic phase transition

As with any hydrodynamic description, the validity of the continuum limit

passing from (1.14) to (1.17) is restricted to step configurations in which the

step density is slowly varying on the scale of the mean step spacing. To

check the consistency of this assumption, we consider the outflow region of

the bunch, where the spacing between steps leaving the bunch becomes large

and hence the nonlinear interaction terms on the right hand side of (1.14) can

be neglected. We are thus left with the linear system

dxi

dt
=

1 − b

2
(xi+1 − xi) +

1 + b

2
(xi − xi−1), (1.22)

which can be solved by the exponential traveling wave ansatz

li ≡ xi+1 − xi = AeQ(i+Ωt). (1.23)

Inserting (1.23) into (1.22) yields the relation

b =
sinh Q − ΩQ

cosh Q − 1
≈

sinh Q − Q

cosh Q − 1
. (1.24)

where we have used that Ω → 1 for large bunches according to (1.19) and

(1.20).
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Fig. 1.17 Trajectories of 64 step evolving under the weakly conserved dynamics (1.14) with
b = 20 and U = 12. Step positions are shown in a frame moving with the mean step veloc-
ity. Initially the trajectories are horizontal, because the entire bunch moves at the mean step
speed.

The step spacing is slowly varying when Q ≪ 1, which according to (1.24)

requires b ≪ 1. More strikingly, Eq.(1.24) has no solution when b > 1. At

b = 1 the bunch undergoes a dynamic phase transition which is reflected, among

other things, in the number of “crossing” steps between bunches: For b < 1

this number grows with N as ln N, whereas for b > 1 at most a single step can

reside between two bunches at one time [46].

The physical origin of this change of behavior can be traced back to the

evolution equations (1.22). For a step about to leave the bunch the leading

terrace is much larger than the trailing terrace, xi+1 − xi ≫ xi − xi−1, such that

the right hand side of (1.22) is dominated by the first term, which is negative

for b > 1. The linear term thus pushes the step back into the bunch, and it

can escape only thanks to the repulsive, nonlinear step-step interaction. Since

the bunches become steeper with increasing size, the ability of a bunch to eject

crossing steps also depends on the number of steps N that it contains.

The result of this interplay between linear and nonlinear effects is the phase

diagram in the U-N-plane depicted in Fig.1.16. At moderate values of U it

predicts a qualitative change in the behavior of bunches with increasing N.

For small bunches the emission of steps ceases completely, such that all steps

constituting the bunch move at the speed of the whole bunch and V = 1 in our

units. Larger bunches emit one step at a time. Figure 1.17 shows the transition

between the two regimes in a time-dependent situation. The initial condition

consists of 4 small bunches of 16 steps each. These bunches initially merge in a
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hierarchical fashion without exchanging steps. This behavior is characteristic

of strongly conserved step dynamics [40, 43], which in our units corresponds

to b → ∞. After the last merger the bunch enters the region in the phase

diagram of Fig.1.16 where step emission is possible, and correspondingly the

overall bunch motion slows down. It can also be seen that the emission of

steps is accompanied by a periodic “breathing” of the entire bunch [46].

A rough estimate of experimental parameters indicates that both regimes

b < 1 and b > 1 can be accessed in experiments on electromigration-induced

step bunching of the Si(111) surface by varying the temperature [44]. The

identification of the predicted phase transition is however not straightforward

because real steps can bend [54], thus invalidating the one-dimensional ap-

proximation used throughout this section.

1.3.5
Coarsening

The time evolution depicted in Fig.1.17 is an example of coarsening, a term that

is generally used to describe the (unlimited) increase of bunch size with time.

In many cases coarsening proceeds according to a power law,

L ∼ N ∼ tn (1.25)

defining the coarsening exponent n. Despite recent progress in the theory

of coarsening dynamics for one-dimensional fronts [55], a quantitative analy-

sis of coarsening dynamics based on nonlinear continuum equations such as

(1.17) seems still out of reach. Nevertheless, heuristic arguments (to be ex-

plained below) in combination with numerical [40, 42] and experimental [56]

evidence indicate that, as far as the weakly conserved system (1.14) including

its strongly conserved limit is concerned, the coarsening exponent is

n =
1

2
(1.26)

under a wide range of conditions; in particular, the valuse of n does not seem

to be affected by the phase transition at b = 1 [57].

The first heuristic argument goes back to Chernov [58], and it is based on

the relation (1.20) for the bunch velocity. The key assumption is that V is the

only velocity scale in the problem, such that the velocity difference between

two bunches of similar size ∼ N is also of order ∆V ∼ 1/N. The time re-

quired for two bunches to merge is then of order L/∆V ∼ N2, and (1.26)

follows. A weakness of this argument is that it assumes coarsening to proceed

by the merging of bunches, which does not need to be true when bunches can

exchange steps.

The second argument, due to Liu and Weeks [42], is based on the generally

conserved form of the continuum equation for the height profile h(x, t), which



20 1 Nonlinear dynamics of surface steps

reads (in a frame where the constant rate of sublimation has been subtracted)

∂h

∂t
+

∂j

∂x
= 0. (1.27)

Without further specifying the current j, Liu and Weeks assume the existence

of a single lateral length scale ∼ tn, such that both the height profile and the

current take on scaling forms

h(x, t) = tnH(x/tn), j(x, t) = J(x/tn). (1.28)

Inserting (1.28) into (1.27) enforces (1.26). Similar scaling arguments have been

advanced by Pimpinelli and coworkers [50].

Like the argument of Chernov, the ansatz (1.28) is problematic because the

bunch spacing is not the only length scale in the system [31, 45]; for example,

the bunch width W defines a second (time-dependent) scale which cannot ob-

viously be ignored. An explicit counterexample where the existence of an

additional length scale leads to coarsening exponents which differ from (1.26)

was presented in [49].

1.3.6
Nonconserved dynamics

In the presence of sublimation the rate of volume change (1.13) couples to the

step configuration, and therefore the weakly conserved form of the discrete

[Eq.(1.14)] and continuous [Eq.(1.17)] evolution equations is no longer appro-

priate [28]. The minimal modification of (1.14) which takes account of this fact

reads [59]

dxi

dt
= (1 + g fi)

[

1 + b

2
(xi − xi−1) +

1 − b

2
(xi+1 − xi)

]

+U(2 fi − fi+1 − fi−1),

(1.29)

where the new dimensionless parameter g is proportional to the strength of

the repulsive step-step interactions. On the linearized level the introduction

of the new term shifts the instability condition, which now reads [48, 59]

b > 6g. (1.30)

The nonlinear consequences of the new term are quite dramatic. Numerical

simulations of (1.29) [60], as well as of a more complicated non-conserved

model [40] show that the coarsening of step bunches is arrested when the

bunches have reached a certain size. Correspondingly, a large initial step

bunch evolving under the dynamics (1.29) breaks up into smaller bunches,

as illustrated in Fig.1.18.
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Fig. 1.18 Surface profiles generated with the nonconserved discrete model (1.29) with pa-
rameters b = 0.7 and U = g = 0.05. The initial condition is a single large bunch, which first
relaxes into a quasi-stationary configuration and then breaks up into smaller bunches after
4000 time steps. Height profiles at different times have been shifted in the horizontal direction.

The absence of (asymptotic) coarsening in the nonconserved case is con-

sistent with analyses in which weakly nonlinear continuum equations (in the

sense of [61]) are derived from the discrete step dynamics close to the instabil-

ity threshold, i.e. for 1 − 6g/b ≪ 1 [62, 63]. These equations typically display

spatio-temporal chaos or structure formation at a fixed length scale, but no

coarsening [31]. However, for strongly nonlinear continuum equations simi-

lar to (1.17), which are expected to apply when b ≫ g, such results are so far

not available.

1.3.7
Beyond the quasistatic approximation

With few exceptions [64–66], most theoretical studies of step dynamics work

in the quasistatic approximation, which implies that the dynamics of the dif-

fusing adatoms on the terraces separating the steps is assumed to be much

faster than the step motion. As a consequence a step reacts instantaneously to

the motion of its neighbors, which mathematically leads to coupled first-order

equations for the step positions such as (1.14).

A simple and conceptually appealing way of explicitly including the time

scale of adatom dynamics was recently proposed by Ranguelov and Stoy-

anov, who derived and studied a coupled system of two sets of evolution

equations, one for the terrace widths li = xi+1 − xi and one for the (suit-
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ably parametrized) adatom concentration profile on the terraces. Remark-

ably, in this setting the equidistant step train may undergo an instability into

a new dynamic phase characterized by step compression waves [67], even if

it would be completely stable in the quasistatic limit. The instability is caused

solely by the time delay that is introduced into the interaction between steps

by the finite time scale of the adatom dynamics, similar to the instabilities

induced in follow-the-leader models of highway traffic by the finite reaction

time of drivers [52, 53]. In the presence of electromigration and sublimation,

the non-quasistatic model reproduces the main features of the phase transition

described above in Sect.1.3.4 [68].

1.4
Conclusions

The fact that the evolution of nanostructures is intrinsically noisy is by now

widely appreciated [1]. In contrast, the role of deterministic nonlinear dynam-

ics, in the sense of dynamical systems theory, as a source of complex behav-

ior is largely unexplored in this context. Here I have presented the results of

two case studies in which concepts from nonlinear dynamics appear naturally

in the analysis of the evolution of surface nanostructures. In both cases sur-

face steps constitute the relevant degrees of freedom which, despite satisfying

simple equations of motion, can display a wide range of dynamic phenom-

ena. Many other systems, not discussed here, fit into the same framework; an

example of current interest is the thermal decay of nanoscale mounds, either

through the periodic collapse of the top island [69] or through the jerky rota-

tion of a spiral step emanating from a screw dislocation [70]. It should have

become clear that much, perhaps most of the work in this field remains to be

done.
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