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We explore the nature of glass-formation in variable spatial dimensionality (d) based on the
generalized entropy theory, a synthesis of the Adam-Gibbs model with direct computation of the
configurational entropy of polymer fluids using an established statistical mechanical model. We find
that structural relaxation in the fluid state asymptotically becomes Arrhenius in the d → ∞ limit
and that the fluid transforms upon sufficient cooling above a critical dimension near d = 8 into a
dense amorphous state with a finite positive residual configurational entropy. Direct computations
of the isothermal compressibility and thermal expansion coefficient, taken to be physical measures
of packing frustration, demonstrate that these fluid properties strongly correlate with the fragility
of glass-formation.

PACS numbers: 64.70.Q-

Growing evidence indicates that molecular packing
plays an essential role in both the physics of crystalliza-
tion [1–5] and glass-formation [6–17], prompting a con-
sideration of variable spatial dimensionality (d) as a con-
ceptual probe of these solidification processes. In par-
ticular, the “decorrelation principle”, recently proposed
by Torquato and Stillinger [18, 19], states that uncon-
strained correlations in hard hyperspheres diminish with
increasing d and vanish in the d → ∞ limit. Likewise,
recent simulations [7–9] have indicated that certain of-
ten cited aspects of glass-formation, such as the dynamic
heterogeneity and the decoupling between structural re-
laxation and diffusion, become diminished at elevated d.
While prior studies [11–15] have focused mainly on how
critical packing fractions associated with glass-formation
in hard hyperspheres vary with d, little is known concern-
ing the d dependence of the characteristic temperatures
and fragility of glass-formation in molecular fluids. No
prior work has considered complex fluids, such as poly-
meric liquids, where many molecular parameters may be
tuned to control the nature of glass-formation.
In this Letter, we consider the glass-formation of a

model polymer glass-forming (GF) liquid in d dimen-
sions. Our approach is based on the generalized entropy
theory (GET) [20], which is a combination of the lat-
tice cluster theory (LCT) [21] and the Adam-Gibbs (AG)
theory [22] linking the configurational entropy sc (i.e.,
the entropy devoid of the vibrational component) to the
structural relaxation time τα. The LCT employs a d-
dimensional hypercubic lattice model, whose use facili-
tates the development of an expansion about the mean-
field limit of infinite d. The LCT thus naturally provides
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a framework for considering the d dependence of poly-
mer thermodynamic properties, thereby making the GET
suitable for exploring glass-formation in d dimensions.

As a primary result, we find that structural relaxation
in the fluid state asymptotically becomes Arrhenius in
the d → ∞ limit [23], a limiting behavior that is a
dynamical counterpart of the decorrelation principle of
Torquato and Stillinger [18, 19]. Moreover, our theory
indicates that the fluid transforms upon cooling above
a critical dimension near d = 8 into a dense amorphous
state with a finite positive residual configurational en-
tropy. We show that the “kinetic fragility”, determined
from the temperature (T ) dependence of τα, decreases
with d, while the “thermodynamic fragility”, defined as
the relative rate of change of sc with respect to T , in-
creases with d, in accord with recent simulations for soft-
sphere liquids for d = 2, 3, and 4 [7]. Analyses of the
isothermal compressibility and thermal expansion coeffi-
cient, taken to be physical metrics of packing frustration,
indicate that molecular packing becomes more efficient
in higher d, and, as anticipated, these thermodynamic
properties strongly correlate with the d dependence of
the fragility. We thus confirm the qualitative geometrical

origin of the reduced kinetic fragility upon increasing d.

We consider a d-dimensional melt of chains with the
structure of polypropylene (PP) [20]. For comparative
purposes, a common parameter set is used in all d: the
microscopic cohesive energy is ǫ = 200 K, the bending
energy is Eb = 800 K, and the polymerization index is
Nc = 8000. By employing these parameters, the GET
calculations for constant pressure (P = 0 MPa) polymer
melts for d = 3 yield the glass transition temperature
Tg and fragility [24] which are typical of synthetic GF
polymers.

The temperature dependence of the configurational en-
tropy is central to the AG model. Hence, we first focus
on this quantity in d dimensions. The GET considers
the configurational entropy density sc (i.e., the configu-
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FIG. 1. Main: sc/kB as a function of T for various d at
P = 0 MPa. Dotted lines highlight where sc is negative, an
unphysical behavior that is probably an artifact of high T
expansion in the LCT for low d and a mathematical feature
that disappears for higher d. Dashed lines denote the low T
constants of sc/kB for each d. Inset: s∗c/sc as a function of
(TA − T )/TA for various d.

rational entropy per lattice site [20]) at constant P ,
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where F is the Helmholtz free energy [21], V = NlVcell

is the total volume of the system with Nl and Vcell the
number of total lattice sites and the volume associated
with a single lattice site, and Np is the number of poly-
mer chains. While Vcell in d dimensions may be defined in
terms of the volume Vcell = adcell of a d-dimensional cube
with acell the edge length, basic quantities, such as Boltz-
mann’s constant kB, cannot be determined in d > 3. We
surmount this problem by performing all calculations at
P = 0 MPa in all d since this condition completely elim-
inates problems in estimating Vcell and kB in d > 3.
Figure 1 displays the calculated sc/kB as a function of

T for various d. As in d = 3, sc for larger d displays a
shallow maximum s∗c (crosses in Fig. 1) at a high T that
defines the onset temperature TA of glass-formation in
the GET that signals the onset of non-Arrhenius behav-
ior of τα [20], and the product scT exhibits an inflection
point (asterisks in Fig. 1) at a lower T that uniquely
defines the crossover temperature Tc in the GET that
separates two regimes of T with qualitatively different
dependences of τα on T [20]. Evidently, sc formally be-
comes negative (dotted lines in Fig. 1) at low T and
low d in our mean-field theory, an unphysical behavior
that is probably an artifact of high T expansion im-
plicit to the LCT [25]. However, taken at face value,
the point at which sc vanishes signals a divergence of τα
in the AG model. The existence of an equilibrium solid-
ification transition in a disordered material implies that
the transition must have the mathematical character of

a second-order phase transition, exactly the interpreta-
tion made long ago for the glass transition by Gibbs and
DiMarzio [26].
The GET generally predicts the presence of a low T

plateau in sc (denoted by sc,r; see the dashed lines in
Fig. 1). This plateau increases linearly with ln(d/2)
and becomes positive beyond a critical dimension dc [27],
and hence, an “ideal glass transition temperature” T0,
where sc formally vanishes, only exists for d < dc in the
GET. We further find that dc is independent of ǫ and
Eb but varies with Nc for a fixed molecular structure
and that dc is near d = 8 for the PP structure [27]. Some
recent models of glass-formation [16, 17] predict a critical
dimension of dc = 8 above which the Stokes-Einstein
relation holds, a prediction that might be related to the
behavior displayed in Fig. 1.
The evidence for a nonzero residual entropy in the

glassy state has been a matter of long-standing discus-
sion [28]. According to the AG theory, the appearance of
a positive constant sc implies that τα does not diverge at
T > 0 K and that structural relaxation becomes Arrhe-
nius again at low T , albeit with a much higher activation
free energy than that above TA. The ratio of the Ar-
rhenius activation free energies in the low and high T
Arrhenius regimes above dc can be calculated as s∗c/sc,r,
a quantity that is evidently larger than unity and that
decreases with d as s∗c/sc,r = 1/[A−B/ ln(d/2)] with the
fitted constants, A = 0.325 and B = 0.505 [27]. Since
τα becomes astronomically large in the low T Arrhenius
regime, the thermodynamic state in this regime can be
considered to be a “glass”. Notably, sc appears to ex-
hibit a step drop towards sc,r near Tc for large d, sug-
gesting that the fluid transforms into a glass at a finite T
upon cooling through a first-order phase transition in the
d → ∞ limit. Interestingly, the “tiling model” of glass-
formation, developed by Weber and Stillinger [29, 30],
predicts the glass transition to be first-order.
We now consider the T dependence of τα in d dimen-

sions, which is obtained in the GET through the AG
relation [22],

τα = τ∞ exp[εAG/(kBT )], εAG = ∆µ(s∗c/sc), (2)

where τ∞ is the high T limit of τα, εAG is the AG ac-
tivation free energy, and ∆µ is the T independent acti-
vation free energy at high T above TA where the Arrhe-
nius dependence of τα holds. τ∞ in d = 3 is taken in
the GET as a “default” value of 10−13 s. Since τ∞ is
expected to be non-universal in variable d, we consider
only the dimensionless relaxation time τr = τα/τ∞. The
GET estimates ∆µ in d = 3 from the empirical relation,
∆µ/kB = 6 Tc [20]. Simulations for d = 2, 3, and 4 [7, 31]
suggest that ∆µ increases approximately in proportion
to d. This phenomenology is quite understandable from
classical arguments by Eyring [32] relating ∆µ to the co-
hesive interaction strength of the fluid, which scales in
a hypercubic lattice model in proportion to the coordi-
nation number (2d). The scaling of ∆µ with 2d implies
that ∆µ in the GET obeys ∆µ/kB = 2d Tc,d=3, where
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FIG. 2. log(τr) as a function of T for various d.

Tc,d=3 is the Tc in d = 3.
Before analyzing the T dependence of τr, we investi-

gate the T dependence of s∗c/sc in d dimensions, which
describes the multiplicative increase of εAG. The inset
to Fig. 1 displays s∗c/sc for various d as a function of
(TA − T )/TA, a reduced temperature that measures the
degree of quench into the “conjested” regime of glassy
dynamics. The growth of εAG with increasing d and, cor-
respondingly with the scale of collective motion, weakens
for fixed (TA−T )/TA. Evidently, the GET predicts that
structural relaxation in the fluid state becomes Arrhenius
in the d → ∞ limit where s∗c/sc approaches unity asymp-
totically. Previous work [20] indicates that s∗c/sc for
d = 3 exhibits a parabolic dependence on (TA − T )/TA,

s∗c/sc = 1 + Cs[(TA − T )/TA]
2, Tc < T < TA. (3)

Cs measures the extent of cooperative motion at high T
in the GET [20], and we find that Eq. (3) holds well in
(TA − 50, TA) in d ≥ 3.
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Figure 2 displays the T dependence of log(τr) for vari-
ous d, along with the fits to the Vogel-Fulcher-Tammann
(VFT) equation,

τr = τ0 exp

[

1

KVFT(T/TVFT − 1)

]

, (4)

where τ0, KVFT, and TVFT designate the high T limit
of τr, the “kinetic fragility” parameter quantifying the
degree to which relaxation is non-Arrhenius, and the
VFT temperature where τr extrapolates to infinity, re-
spectively. Previous analyses for d = 3 [20] have shown
that the VFT equation describes τα calculated from the
GET quite well within the T range between Tc and Tg.
Since we are unable to define Tg in d > 3 in terms of a
characteristic timescale, VFT fits are performed for the
T range between Tc and a lower temperature Tl at which
log[τr(Tl)] = 63 [33]. The d dependence of KVFT is de-
picted in Fig. 3, along with Cs and the ratio TVFT/TA,
a measure of the “breadth” of glass-formation [20]. All
these three metrics for glassy dynamics decrease with d.
Following the simulation studies [7], we additionally

explore how d alters the “thermodynamic fragility” pa-
rameter KT , determined from the slope of the T depen-
dence of the product scT ,

scT/kB = KT (T/TK − 1), (5)

where TK is the Kauzmann temperature, estimated by
linearly extrapolating scT to zero over the same T range
where KVFT is obtained (see Fig. 4). We prefer to
call KT the “low T thermodynamic steepness” param-
eter because this parameter bears no direct relation to
the strength of the T dependence of τα. The inset to
Fig. 4 indicates that KT increases with d, in agreement
with the trend found in recent simulations of soft-sphere
GF liquids in d = 2, 3, and 4 [7]. Reference [7] also shows,
based on limited data from simulations, thatKVFT seems
to weakly increase with d in the same model [34].
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Our theory, thus, predicts that KVFT varies in the op-

posite direction as KT when d grows. An opposite de-
pendence of KVFT and KT is also found in 3-dimensional
simulations of GF liquids in which particles interact with
a modified Lennard-Jones potential [35], where the po-
tential softness is tuned to alter the fragility and where
the inverted variations of KT and KVFT have been at-
tributed to variations in ∆µ. Apparently, the same mech-
anism also explains our results since ∆µ scales with 2d
so that ∆µ can be the dominant contribution to KVFT

for high d.

We now seek what physical factors govern the fragility
of glass-formation. Building on the earlier GET calcu-
lations for d = 3 indicating that the fragility of poly-
mer GF liquids primarily arises from packing frustra-
tion [20], we explore physical metrics that might best
describe packing frustration. We consider the isother-
mal compressibility κT = −(1/V ) (∂V/∂P )|T and the
thermal expansion coefficient αP = (1/V ) (∂V/∂T )|P as
possible physical measures of packing frustration. In par-
ticular, we analyze κr = κT (kBT )/ρ (where ρ = ϕ Vcell

with ϕ the polymer filling fraction [21]) and αr = TαP ,
since these reduced quantities are found to strongly cor-
relate with fragility in d = 3. (A more detailed discussion
for d = 3 will be presented elsewhere.) As expected, as
d grows, the T dependence of κr and αr weakens and
their overall magnitudes greatly decreases, thereby re-

flecting the diminished packing frustration with increas-
ing d [27]. As an illustration, Fig. 5 exhibits the presence
of strong correlations between various dynamic metrics
(KVFT, TVFT/TA, and Cs) and κr(TA) and αr(TA), im-
plying that the d dependence of fragility can be predicted
from a knowledge of the physical measures of packing
frustration. Therefore, both the reduced fragility with
increasing d and the corresponding return to Arrhenius
relaxation are consequences of the reduction of packing
frustration in higher d where space is more “open” and
packing constraints are more weakly “felt”.
In summary, our exploration of polymer glass-

formation in variable dimension indicates some clear
trends as the dimensionality is varied. Perhaps most basi-
cally, we find that structural relaxation in the fluid state
asymptotically becomes Arrhenius in the d → ∞ limit
and that the fluid transforms upon cooling above a crit-
ical dimension near d = 8 into an amorphous state with
a finite positive residual configurational entropy. The
transition from a fragile glass-forming liquid in low di-
mensions to an ideally strong liquid in the d → ∞ limit
indicates that the kinetic fragility decreases with increas-
ing dimension. In accord with simulations [7], our theory
predicts that the thermodynamic fragility KT grows at
elevated d. KT fails to be a fragility parameter, and
we suggest that KT be termed the “low temperature
thermodynamic steepness” parameter. By establishing
strong correlations between the isothermal compressibil-
ity and thermal expansion coefficient and the fragility, we
suggest that these thermodynamic properties should pro-
vide physical metrics of packing frustration for predicting
fragility variations in glass-forming liquids.
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S1

Supplemental Material for
Polymer Glass-Formation in Variable

Dimension

S1. MEAN-FIELD ESTIMATION OF THE

CONFIGURATIONAL ENTROPY AT LOW

TEMPERATURES AND DEPENDENCE OF THE

CRITICAL DIMENSIONALITY ON MOLAR

MASS

The residual configurational entropy density sc,r [i.e.,
the low temperature (T ) constant of the configurational
entropy density sc] can be obtained by analyzing the ther-
modynamics of the system in the limit where all lattice
sites are occupied by chain segments. Hence, we focus
on the low T regime of glass-formation where the poly-
mer filling fraction ϕ (defined as the ratio of the total
number of chain segments to the total number of lattice
sites [21, 36]) approaches unity in order to estimate how
the critical dimensionality, above which sc ceases to van-
ish, depends on molecular parameters. For low T (e.g.,
T = 10 K), the factor exp(−βEb) [where β = 1/(kBT )
and Eb is the bending energy] in the LCT free energy
nearly vanishes for large Eb [e.g., the present work uses
Eb = 800 K, leading to exp(−βEb) = exp(−80) at T = 10
K]. In this limit, all terms multiplied by exp(−βEb) in the
LCT free energy disappear, and then taking ϕ = 1 leads
to the greatly simplified expression for the free energy,

βfr =
1

M
ln

(

2

zLM

)

+

(

1−
1

M

)

−

6
∑

i=1

Ci, (S1)

where M is the molar mass (defined as the total number
of chain segments in a single chain), L designates the
number of sub-chains in a single chain [21, 36], and Ci

has the following form [36]:

Ci = Ci,0 + Ci,ǫ(βǫ) + Ci,ǫ2(βǫ)
2, (S2)

where ǫ is the nearest-neighbor van der Waals interaction
energy. However, Ci,0, Ci,ǫ, and Ci,ǫ2 are now indepen-
dent of T , and, hence,

β
∂Ci

∂β
= Ci,ǫ(βǫ) + 2Ci,ǫ2(βǫ)

2. (S3)

Consequently, the residual configurational entropy den-
sity, sc,r = − ∂fr/∂T |ϕ, emerges as

sc,r
kB

=−
1

M
ln

(

2

zLM

)

−

(

1−
1

M

)

+
6

∑

i=1

(

Ci − β
∂Ci

∂β

)

. (S4)

Substituting Eq. (S3) into Eq. (S4) leads to the relation,

sc,r
kB

=−
1

M
ln

(

2

zLM

)

−

(

1−
1

M

)

+

6
∑

i=1

[

Ci,0 − Ci,ǫ2(βǫ)
2
]

. (S5)
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FIG. S1. Residual configurational entropy density sc,r/kB as
a function of d for various polymerization indices Nc for a melt
of PP chains. The solid lines are fits to the equation sr/kB =
A ln(d/2) + B with A and B being the fitting parameters.
The critical dimensionality dc, where sc,r starts to be positive,
increases with Nc and saturates at d = 10 for sufficiently large
Nc.

Taking advantage of the fact that
∑6

i=1 Ci,ǫ2 = 0 [36],
sc,r finally appears in the simple form:

sc,r
kB

= −
1

M
ln

(

2

zLM

)

−

(

1−
1

M

)

+

6
∑

i=1

Ci,0.(S6)

Since Ci,0 is now a function of d (z = 2d) and a
set of geometrical indices that are determined from the
monomer structure and molar mass M , sc,r is indepen-
dent of T , ǫ, and Eb. Figure S1 displays the d dependence
of sc,r for various polymerization indices Nc for a melt
of PP chains. The “critical dimensionality” dc, where
sc,r starts to be positive, is found to increase with Nc,
saturating at d = 10 for large Nc. The d dependence of
sc,r/kB in each case can be well described by the equa-
tion,

sc,r/kB = A ln(d/2) +B, (S7)

where A and B are the fitting parameters. Figure S1 il-
lustrates this variation. The filling fraction at the point
at which sc formally vanishes is somewhat less than unity,
but this simple analytic argument is sufficient for esti-
mating the Nc dependence of the critical dimensionality
above which sc no longer vanishes at low T .

S2. DIMENSIONAL DEPENDENCE OF THE

RATIO OF THE ACTIVATION FREE ENERGIES

IN THE HIGH AND LOW TEMPERATURE

ARRHENIUS REGIMES

As discussed in the main text, the ratio s∗c/sc,r de-
fines the relative magnitude of the activation free energy
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FIG. S2. Activation free energy ratio s∗c/sc,r as a function
of d for d ≥ dc. The line is a fit to the equation s∗c/sc,r =
1/[A − B/ ln(d/2)] with the fitted constants, A = 0.325 and
B = 0.505.

for relaxation in the high and low T Arrhenius regimes
above dc that we separately characterize as being simple
fluid-like and glass-like because of the large difference of
relaxation times in these different regimes of T . The GET
allows us to calculate this activation free energy ratio as
a function of d, and we illustrate our findings in Fig. S2.
Curiously, the activation free energy ratio falls with in-
creasing d, indicating that the dynamics of the high and
low T regimes actually becomes similar in high d, where
the activation free energy ratio saturates at a minimal
value of about 3. The d variation of the activation free
energy ratio is well represented by the approximant:

s∗c/sc,r = 1/[A−B/ ln(d/2)], d > dc, (S8)

where the fitting parameters are estimated to be A =
0.325 and B = 0.505. Because the activation free energy
in the high T regime is large for high d, increasing this
quantity by a factor of 3 in high d translates into an
extremely large increase in relaxation times in the low T
Arrhenius regime.

S3. DIMENSIONAL DEPENDENCE OF THE

REDUCED ISOTHERMAL COMPRESSIBILITY

AND THERMAL EXPANSION COEFFICIENT

Materials that pack more efficiently can be expected
to have a lower and more weakly T dependent isother-
mal compressibility (κT ) or thermal expansion coefficient
(αP ), while those exhibiting a high degree of packing frus-
tration due to the complexity of the molecular structure
should exhibit a relatively large and relatively strongly
T dependent κT or αP . Previous analyses [37] of GET
calculations in d = 3 reveal the existence of a very strong
correlation between the filling fraction at Tg and the
fragility when the molar mass, cohesive interaction, or
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FIG. S3. (a) Main: Reduced isothermal compressibility κr =
κT (kBT )/ρ as a function of T/TA for various d. Crosses,
asterisks, and circles indicate the points corresponding to TA,
Tc, and TVFT, respectively. Data are presented in the T range
(TVFT, TA) of interest in the present work. Inset: Same plot
but shown in a linear scale representation. (b) Main: κr(TA)
as a function of d. Inset: κr(Tc) and κr(TVFT) as a function
of d. Lines in the set indicate the exponential fits, κr(Tx) =
Ax exp(−Bxd) (x = c or VFT) with Ax and Bx the fitting
parameters. We obtained the fitting estimates: Ac = 11.7
and Bc = 1.05 and AVFT = 16.3 and BVFT = 1.77.

pressure is varied. Moreover, molecules in fragile poly-
mer fluids are predicted to pack less efficiently in the
glassy state than those in stronger glass-forming poly-
mer fluids. These observations deduced from the GET
calculations indicate that packing efficiency is a central
factor for understanding the fragility of glass-formation.
This line of reasoning naturally leads to the expectation
that κT and αP correlate strongly with the fragility.

Because our extensive analyses in d = 3 reveal
that the dimensionless isothermal compressibility, κr =
κT (kBT )/ρ with ρ = ϕ Vcell, and the dimensionless ther-
mal expansion coefficient, αr = TαP , strongly correlate
with the fragility of glass-formation, we consider these
reduced quantities in d dimensions. Figures S3 and S4
indicate the GET model predictions for κr and αr as a
function of T/TA for various d. Evidently, the strength
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FIG. S4. (a) Main: Reduced thermal expansion coefficient
αr = TαP as a function of T/TA for various d. Crosses,
asterisks, and circles indicate the points corresponding to TA,
Tc, and TVFT, respectively. Data are presented in the T range
(TVFT, TA) of interest in the present work. Inset: Same plot
but shown in a linear scale representation. (b) Main: αr(TA)
as a function of d. Inset: αr(Tc) and αr(TVFT) as a function
of d. Lines in the set indicate exponential fits: αr(Tx) =
Ax exp(−Bxd) (x = c or VFT) with Ax and Bx the fitting
parameters. We obtained the fitting estimates: Ac = 12.7
and Bc = 0.89 and AVFT = 42.1 and BVFT = 1.63.

of the T dependence of both κr and αr weakens with in-
creasing d, and both κr and αr progressively decreases
with d for fixed reduced temperatures T/TA. The insets
to Figs. S3 and S4 indicate that κr(Tx) (x = c or VFT)
and αr(Tx) (x = c or VFT) decay exponentially with
d to a high approximation. The slower variation with
T of κr and αr and the overall values of κr and αr all
reflect decreased packing frustration with increasing d,
thereby confirming the qualitative geometrical origin of
the reduced fragility found upon increasing d. Both the
reduced fragility with increasing d and the corresponding
return to Arrhenius relaxation are consequences of the re-
duction of packing frustration in high d where space is
more “open” and packing constraints are more weakly
“felt”.


