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1
The Basics of Protein Sequence

Analysis

Katarzyna H. Kaminska, Kaja Milanowska and Janusz M. Bujnicki

1.1 Introduction

Genes and proteins are products of evolution. Over the course of evolution, the nucleotide
sequences of genes undergo numerous changes. First, duplications (or deletions) may lead
to creation of additional copies (or removal) of genes or gene fragments. Second, local
mutations: substitutions, insertions and deletions within genes may result in changes to
the amino acid sequence of proteins they encode. Thus, the initially identical copies of
duplicated genes over time accumulate divergent mutations that make their sequences pro-
gressively dissimilar. Not all positions of protein-encoding genes are equally susceptible to
mutation, as some amino acid residues may be very important for protein function, stabil-
ity, or folding and may thus be more constrained in the residue types allowed. Therefore,
although mutations are random, in nature we observe only such protein variants, in which
sequence changes have been ‘accepted’ by the evolutionary pressure. Proteins with muta-
tions that cause detrimental changes in structure and/or function are usually eliminated. If
the protein is important to the integrity of the organism, the organism that bears the mutant
gene dies, and the structurally/functionally compromised variant ceases to exist; or if it
is not important, then the inactivated gene may be eventually ‘purged’ from the genome
by random deletions. On the other hand, if the mutant variant brings an additional and
beneficial new function to the organism, it is likely to be retained and further ‘optimized’
towards the activity favored by the selective pressure.

The above-mentioned evolutionary mechanisms have given rise to families of evolution-
arily related proteins (homologs), which share a common ancestor. Duplicated proteins are
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2 The Basics of Protein Sequence Analysis

Figure 1.1 In the course of the evolution, protein-encoding genes undergo duplications, and
the resulting copies accumulate differentiating mutations (substitutions, insertions, deletions).
As long as a small subset of residues important for internal stability and interactions with key
partner molecules is preserved, the overall structure and mode of action of diverging homol-
ogous proteins is likely to remain similar. As a result, we observe that extant homologous
proteins retain similar tertiary structure, while sequence similarity becomes less and less evi-
dent. Mutations may cause the protein or one of its paralogous copies to lose its function (and
be eliminated), or to develop a new function, usually by somehow modifying the previous
function. Example: a family of cytosine-C5 methyltransferases. Most members methylate cyto-
sine in DNA; however, DNMT2 has apparently changed its specificity and acts on tRNA, and
DNMT3L has lost the original catalytic activity, but instead gained a new regulatory activity

described as paralogs, and in these relatives the sequences and functions can diverge con-
siderably from the original variant (see Figure 1.1). A general function of paralogs (such
as the ability to bind a certain type of molecule or to catalyze a certain type of chemical
reaction) often remains conserved, but they tend to specialize in different specific roles
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(e.g. catalysis of a similar reaction on different substrates, different mode of regulation, or
being directed to different cellular compartments etc.). It has been found that new activities
and entire biochemical pathways evolve by recruitment and ‘tinkering’ of enzymes that
are already capable of performing the desired chemistry, rather than by developing new
functions from scratch.1 Thus, paralogous enzymes are often found to carry out similar
reactions in different pathways. Examples of large groups of paralogous proteins include:
different kinases or different helix-turn-helix transcription factors encoded in the human
genome. On the other hand, proteins from different organisms that have diverged from the
ancestral gene present in the last common ancestor of these organisms (i.e. copies of ‘the
same protein in different organisms’) are called orthologs. They tend to retain very similar
functions and their sequences usually show higher conservation than between paralogs
(for a detailed review on orthology and paralogy and discussion of several caveats, see
ref. 2). Thus, members of a protein family exhibit divergence, but usually share a specific
biological function despite high sequence diversity.

As the number of known protein structures solved by X-ray crystallography and NMR
techniques increased, it became clear that protein structure is much more highly conserved
throughout evolution than protein’s sequence.3 While in many families sequence identity
between members can drop below 5% identical residues, they tend to retain most of their
common structural scaffold, mainly in the core of the protein. Structure is also more
conserved than function; remote paralogs that retain common fold but replace functionally
important residues may fulfill completely different roles in the cell (examples include
a non-enzymatic heme-binding protein nitrophorin of a bedbug, which is related to an
enzyme inositol polyphosphate 5-phosphatase4). Counterexamples may be found: proteins
that exhibit high sequence similarity but different functions and/or structures (for a review
see ref. 5), however they are relatively rare. This suggests that structure comparison is the
best method to detect remote evolutionary relationship.6 Unfortunately, protein structure
determination is considerably more costly and time consuming than gene sequencing,
therefore the sequence databases have always been several orders of magnitude larger than
the structure databases. There has been an exponential increase in the sizes of both types
of data since the early 1970s but the largest sequence database GenBank7 doubles in size
roughly every 18 months, while the number of protein structures deposited in the Protein
Data Bank8 doubles roughly every three years, hence the gap keeps growing and is unlikely
to be closed in the near future.

Not only have the structures lagged behind sequences, but also functional characteri-
zation. With the current pace of data generation by high-throughput sequencing projects,
it is an impossible task to study all proteins by experiment. Thus, it is imperative to de-
velop methods that use sequence information to identify evolutionary relationships and/or
predict common structures and functions (or at least some aspect thereof). In this chapter,
we discuss bioinformatic approaches for analyzing protein sequences, in particular aiming
at identification and basic characterization of evolutionary relationships. The following
chapters in this volume focus on direct prediction of functional properties from sequence
(Chitale et al.), prediction of local conformation (Majorek et al.), and construction of
three-dimensional structural models based on sequence analyses (Kosinski et al.). Here,
we first define the primary functional units in protein sequence (domains and motifs)
and describe how domains are duplicated and combined in various ways to give different
protein families. We then briefly describe the major classifications and databases of protein
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families, domains, and motifs. In the main part of the chapter we review algorithms for pro-
tein sequence analyses, with the particular focus on their implementations that have been
made freely available as web servers or downloadable computer software. We concentrate
on methods for database searches and identification of sequence similarities, clustering
of sequences into homologous families, multiple sequence alignment, and inference of
evolutionary relationships. Finally, we consider an iterative procedure utilizing these meth-
ods for identification of domains and motifs in the protein sequence and their functional
characterization.

1.2 Domains: Primary Functional Units in Protein Sequence

Proteins are modular, containing discrete regions that perform different roles. The primary
modular unit is called a domain. Regrettably, there is no standard definition of what a
domain really is. Structural biologists put emphasis on structural autonomy, biochemists
and geneticists refer to regions with autonomous function detectable in their experimental
assays, while evolutionary biologists focus on regions that are conserved throughout
the evolution. Here, we adapt a definition based mostly on structural and evolutionary
criteria.

The structural domain has been first defined in the 1960s with the advent of the first
structures of water-soluble globular proteins determined by X-ray crystallography (for
review see ref. 9). Globular domains are characterized by ellipsoidal or spherical shape,
and a relatively stable internal structure, which is defined by the amino acid sequence.
In structural domains the backbone of a polypeptide chain exhibits elements of regular
secondary structure (α-helices and/or β-strands) that forms a unique three-dimensional
arrangement called a ‘fold’, which serves as a scaffold for functionally important side chains
of amino acid residues. Some amino acid residues form a hydrophobic core, from which
water molecules are excluded, while others are exposed at the hydrophilic surface, where
they form sites of interactions with other molecules. In order to satisfy these requirements,
protein domains are typically formed by amino acid sequences of high informational
complexity. Globular domains typically range from 50 to 300 residues with a few larger
and smaller exceptions (review: 6). Domains located within biological membranes exhibit
similar structures, with a few exceptions: they are usually barrel-shaped, with a hydrophobic
‘belt’ on the outside that ensures a seamless fit to the hydrocarbon tails of the lipid bilayer.
One type of transmembrane (TM) proteins is composed exclusively of α-helices, while
the other contains only β-strands; the latter type of structures form pores, and contain an
internal hydrophilic channel instead of the hydrophobic core (review: 10).

Since 1970 it emerged that structural domains may recur in different structural contexts
or in multiple copies in the same polypeptide chain. More recent comparative analyses
of large numbers of protein sequences and structures confirmed that a structural domain
is also a fundamental unit in evolution (reviews: 6,11). The same domains can be found
in different proteins in all three forms of life, Archaea, Bacteria and Eukaryota, as well
as in viruses that infect them. Examples of frequently recurring domains include: a helix-
turn-helix domain often found in DNA-binding proteins (20∼100 residues), a TIM-barrel
domain present in many enzymes (∼200 residues), or a transmembrane domain found in
G-protein coupled receptors (∼250 residues).
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Gene fragments encoding domains may undergo duplication (e.g. leading to proteins
with tandem copies of the same domain), fusion with other genes or gene fragments
(leading to multi-domain proteins). Protein families are usually defined based on a pres-
ence of one common domain, which does not exclude the possible presence of additional
domains. For example in enzyme families, the common homologous domain is usually
responsible for performing catalysis, while the auxiliary domains may be responsible for
recognition of various substrates. (e.g. in enzymes acting on DNA, they may recognize dif-
ferent specific DNA sequences). These auxiliary domains may formally belong to different
families or even exhibit different folds. Thus, it is important to remember that proteins
may comprise multiple domains, of which some may be homologous, while other may
be non-homologous. Certain combinations of domains that are found recurring in diverse
proteins are often referred to as modules or supradomains. They duplicate and are selected
as one evolutionary unit either because it is functionally beneficial to have both activities
present in one polypeptide or because the functional site is created between the domains.12

Examples of such modules can be found e.g. in nucleic acid polymerases, which often have
the polymerization domain fused to an exonuclease proof-reading domain or in proteins
involved in signal transduction, which have a nuclear receptor ligand-binding domain fused
to a DNA-binding domain.

It is important to remember that a conserved 3D structure in the different context does
not guarantee the same amino-acid sequence or function; in fact these features may differ
substantially for remotely related proteins and domains. An insertion of one domain into
another may cause the latter domain to become discontinuous in sequence, even though
its original three-dimensional fold is preserved, with distant sequence elements brought
together to form a stable structure. Another example of a complex rearrangement is circular
permutation (review: 13), when a sequence fragment from one terminus is transferred to
the other terminus, thereby changing the order of sequence motifs within the domain. A
circularly permuted sequence may still form the same three-dimensional fold, albeit with
a different connectivity of the polypeptide chain (N- and C-termini of a protein appear in a
different position in the structure). Sequence rearrangements that do not preserve the order
of primary sequence make detection of structurally conserved domains a very difficult task
(see the final section of this chapter).

In addition to stably folded domains, many proteins possess segments that are
non-globular in the sense that they lack a tightly packed hydrophobic core. They are often
formed by compositionally biased sequences that are poor in hydrophobic residues and
enriched in charged residues, and exhibit different types of ‘low complexity’ regions,
e.g. short-period repeats, near-homopolymeric residue clusters, or aperiodic mosaics of
only a few residue types.14,15 Such segments may form fibrous or filamentous structures
(e.g. in collagen or keratins) or exhibit conformational heterogeneity, so called ‘intrinsic
disorder’ (see refs. 16,17). Some of these regions form linkers that permit the correct
spacing between globular domains, but others play more specific roles, in particular harbor
sites for interactions with other molecules, including proteins and nucleic acids. The
review of the variety of structures assumed by non-globular regions is beyond the scope
of this chapter; here, we will discuss only those of their features that are directly related
to sequence–function relationships. For recent reviews on structure–function relationships
of fibrous and intrinsically disordered proteins (IDPs) proteins the reader should consult
ref. 18 and refs 19–21, respectively. Bioinformatics methodology for prediction of
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regions of disorder is reviewed in detail in the chapter by Majorek et al. in this
volume.

1.3 Sequence Motifs

While essentially all protein sequences can be subdivided into globular domains and non-
globular segments, the most basic functional unit in protein sequence is called a motif.
Motifs usually correspond to short sequence fragments (a few, typically up to 10 amino
acids) that reflect some vital biological role in terms of structure or function (e.g. are
responsible for stabilizing interactions or promote a particular conformation within a
protein molecule or take part in binding of another molecule). Motifs occur frequently both
in globular and non-globular sequence segments, but depending on the structural context,
they fulfill different roles. Structured motifs (SMs) are fingerprints of globular domains.
They are conserved in the evolution because of critical involvement in activity, for which
the entire domain is selected, e.g. binding of the ligand that serves as a cofactor in the
enzymatic reaction catalyzed by the enzyme. They are usually conformationally rigid (or
at least their fragments are, while some parts may show mobility required for function).
Examples of SMs include Walker A GXXGXGK(T/S) and Walker B ‘(R/K)X(6-7)Lh(4)D’
motifs involved in ATP-binding in a large group of ATP-utilizing enzymes.22 Other SMs
may be required for structural stability, e.g. contain Zn-binding Cys and His residues in
e.g. C2H2–type Zn-finger domains: ‘CX(2-4)C. . .HX(2-4)H’.23 The presence of a common
SM in a particular set of domains suggests the presence of a similar well-defined structure
required for binding of a ligand, but may or may not indicate homology. In particular,
motifs involved in binding of widespread ligands are found in several protein families that
are unrelated to each other. Thus, caution must be exerted when identification of a single
common SM is used to infer evolutionary relationship, and it should be accompanied by
analysis of global sequence similarity (see below) and preferably, also global structural
similarity.

Linear motifs (LMs) are a different group of functionally heterogeneous sites. They me-
diate interactions of proteins with other molecules, are responsible for cell compartment
targeting, or represent the sites of post-translational modification, such as phosphorylation,
glycosylation, fucosylation, methylation etc. (review: 24). Motifs of this kind are typi-
cally embedded in locally unstructured regions, but possess a few specificity-determining
residues favoring disorder-order transition upon binding. LMs have a unique amino acid
composition, dissimilar to either globular domains or non-globular segments; they are en-
riched in Pro, hydrophobic residues Trp, Leu, Phe, and Tyr, as well as charged residues
Arg and Asp.25 Examples of LMs include the PXXP motif for binding to SH3 domains, the
NPXY motif for the interaction with PTB domains, the WXXW C-mannosylation site, and
the WXXX(Y/F) peroxisomal targeting signal. LMs rarely occur in ‘conventional’ glob-
ular domains, but if they do, these domains almost invariably undergo posttranslational
modifications. LMs also show completely different conservation patterns than SMs. SMs
are evolutionarily constrained by many interactions within the globular domains and/or
stable binding to high-affinity ligands, therefore they are often conserved in entire protein
families or superfamilies. LMs are typically involved in transient interactions, rely on a
very few specific interactions and their structure is loosely constrained, therefore they may
be easily created as well as removed due to few accidental mutations. If they appear in
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locations that confer selective advantage, e.g. due to introducing a regulatory switch, they
may be preserved in the course of the evolution. However, due to the relative redundancy of
LMs, removal of a single site (e.g. one of many phosphorylation sites within a regulatory
region of a particular protein) rarely has as drastic effects as removal of an individual SM
(e.g. a catalytic motif in the enzyme). As a result LMs tend to be conserved only among
very close homologs, and are frequently in non-homologous proteins that nonetheless share
the same functionality (e.g. the ability to be phosphorylated by the same protein kinase).
Thus, Nature appears to use LMs as evolutionary interaction switches.24

1.4 Databases of Protein Families, Domains, and Motifs

The importance of domains as structural building blocks, basic elements of biochemical
function, and elements of evolution, has brought about many automated methods for their
identification and classification in proteins of known structure. However, as mentioned
before there is no standard definition of what a domain really is, therefore assigning domain
boundaries even for proteins with known structures is not a trivial task. While human experts
disagree for approximately 10% of structures, automatic methods for domain assignment
show much larger discrepancy even for structures that the human experts agree on.26

Expectedly, assignment of domains for proteins in the absence of structural information
varies enormously; hence prediction of domains from sequence remains a challenging
problem. However, before we describe bioinformatic methods that approach this problem,
we will describe databases of protein families and domains, and tools for database searches
and multiple sequence alignments.

A number of databases have been created to facilitate classification and identification of
domains and motifs, and using them for protein function prediction. They usually classify
proteins based on the presence of conserved domains (defined according to many different
criteria) and/or motifs and group them according to sequence or structural similarity or
based on predicted evolutionary relationships, such as orthology. Table 1.1 lists some of
the most comprehensive and well-established databases of families, domains, and motifs,
whose entries have been created and are curated at least partially by protein experts.

The most popular databases that classify protein domains based on structural compar-
isons are SCOP 27 and CATH.28 Domain definitions used by these databases are based
on very similar geometric criteria and therefore usually coincide with each other. Both
databases are organized hierarchically, with the top level corresponding to structural class
of a domain, i.e. the proportion of residues adopting α-helical or β-strand conformation
(see the chapter by Majorek et al. for the discussion on secondary structure assignment).
Within each class, domains are classified into folds, which group together proteins ex-
hibiting significant structural similarity, both in terms of the arrangement of structures in
three dimensions, and connectivity between them (as a result, circularly permuted variants
that differ in connectivity should fall into different folds, hence this criterion is sometimes
relaxed). Further, proteins with the same fold and evidence for evolutionary relationships
are classified into homologous superfamilies. Within superfamilies proteins with clear
sequence similarity are grouped into families. SCOP is maintained by mostly manual
analysis for recognizing relationships to generate superfamilies, while CATH uses a com-
bination of automatic and manual analysis.
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10 The Basics of Protein Sequence Analysis

Among protein family/domain databases that classify protein sequences, there are two
comprehensive meta-databases developed at the EBI in the UK and at the NCBI in the USA
EBI’s INTERPRO29,30 is a major resource for protein families, domains and functional
sites, which integrates the protein sequence database UniProt (which itself is a meta-
database of Swiss-Prot, TrEMBL, and PIR) with databases of protein structure (MSD,
SCOP, and CATH) and databases of families, domains, and patterns: Pfam, PROSITE,
PRINTS, ProDom, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D, and PAN-
THER (see Table 1.1). Among the latter class of databases, particularly important are
Pfam,31,32 currently the most comprehensive primary protein family/domain resource
based on sequence data, and PROSITE,33,34 which focuses on motifs. Pfam-A entries
are high quality, manually curated families, which are further grouped into higher order
clans (based on sequence or structure similarity). Pfam-B entries are additional entries
generated automatically by referring to the ProDom database.

Conserved Domain Database (CDD) is a sequence database meta-resource within
NCBI’s Entrez database system.35,36 The CDD collection contains MSAs of protein fami-
lies and domains imported from Pfam, SMART and COG databases, as well as additional
domains curated at NCBI. CDD-specific domains are organized into evolutionary hierar-
chies. The Clusters of Orthologous Groups (COG/KOG) database37 groups together fam-
ilies of entire proteins and evolutionarily conserved modules from completely sequenced
genomes, which are predicted to form orthologous clusters. The database is split into a two
components: COGs group together proteins encoded by numerous bacterial and archaeal
genomes and two yeast genomes, while KOGs group together a relatively smaller num-
ber of eukaryotic genomes (including yeasts). COG and Pfam definitions of families are
the most commonly referred to in the scientific literature to describe yet uncharacterized
proteins or domains.

In addition to databases of protein families curated by experts, a number of studies
have reported databases resulting from fully automatic clustering of protein sequences,
where ‘families’ indicate groups of proteins classified according to certain numerical value
of sequence similarity. Examples among recently created or updated databases include:
CluSTr (http://www.ebi.ac.uk/clustr/),38 ProtoNet (http://www.protonet.cs.huji.ac.il/),39

SYSTERS (http://systers.molgen.mpg.de/),40 eggNOG (http://eggnog.embl.de),41 InPara-
noid (http://InParanoid.sbc.su.se/),42 OrthoDB (http://cegg.unige.ch/orthodb),43 SIMAP
(http://mips.gsf.de/simap/).44

While protein databases contain thousands of domain families and associated SMs,
known LMs are limited in number. There are also only a few general LM databases such
as ELM45 or Scansite.46 A number of programs specialize in cataloging and predicting
motifs with narrowly defined function and distribution, e.g. sites of different posttransla-
tional modification, often restricted to particular taxonomic groups (see ref. 47 for review).
Table 1.2 lists some of the databases and predictive servers; however a comprehensive
review of such databases is beyond the scope of this chapter.

1.5 Database Searches and Pairwise Alignments

The key step in analyzing our sequence of interest (hereafter referred to as ‘query’ or
‘target’) is to determine whether it shows any similarity to other protein sequences. The
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12 The Basics of Protein Sequence Analysis

determination of sequence similarity, from which functional similarity and/or homology
is inferred, may be carried out in two independent (and complementary) ways, namely
searches for patterns of characters or applying statistical models such as profiles of Hid-
den Markov Models (HMMs). Typically, searches against a database of motifs and full
sequences are employed in parallel to see whether the query protein exhibits known LMs,
SMs and domains.

Motifs can be represented as strings of characters from a specific alphabet, which dis-
criminates between invariant residues, alternative conserved residues, unspecified residues,
excluded residues, repetitions, and other features. A motif can be written as a regular ex-
pression such as ‘Y.A(4){C}[DE]$’, which can be interpreted as Y followed by any residue,
followed by four As, followed by a non-C residue, followed by D or E, followed by C-
terminus. With this representation, identification of exact matches between the sequence
and a database of motifs is fairly simple, as the regular expression either is present in the
sequence or not. However, this way of searching is likely to miss relevant motif variants
that exhibit slight variations. Allowing for approximate matches allows for detection of
more variants, but inevitably causes appearance of false positives. The major limitation of
regular expressions is that they do not take into account the information about the relative
frequency of residues at different positions. Statistical models such as profiles (also called
positional weight matrices, PWMs) give the probability of observing each amino acid in
each position. They allow for partial matches and in general have stronger predictive power,
i.e. enable detection of diverged but genuine motifs. Some popular software tools for detec-
tion of known motifs and ‘de novo’ discovery of previously unknown motifs in functionally
related sequences are summarized in Table 1.2. Once sequences sharing a common motif
are identified and the motif variants are aligned with each other (see below for explana-
tion of alignment techniques), they can be represented as Sequence Logos66 for visual
inspection (e.g. using the WebLogo server67 at http://weblogo.berkeley.edu/logo.cgi).

Recognition of very short motifs (e.g. most of LMs) remains problematic, as they are
often presented in many sequences solely to the sequence composition of the proteome.
Thus database searches with most method yield many false positives that have to be
filtered out by considering additional information, e.g. presence of globular domains,
which usually contain SMs but are depleted in functionally relevant LMs. On the one
hand, presence of non-globular, e.g. disordered regions, can be exploited to detect certain
LMs, such as phosphorylation sites; this rule has been implemented in the DisPhos
server68 (http://www.ist.temple.edu/DISPHOS/). On the other hand, homologous globular
domains often contain conserved sets of SMs, e.g. in spatially adjacent regions involved in
formation of binding sites. Typically, the order of SMs is preserved and a pattern of motifs
may be exploited to build a diagnostic tool for detection of new members of a protein
family. Nonetheless, because of problems with assessment of statistical significance of
short motifs, it is recommended that homology predicted via motif searches is confirmed by
one of the tools that provides a more global estimate of sequence similarity, e.g. sequence
alignment.

Sequence alignments usually assume (or search for) evolutionary conservation, as op-
posed to similarity of short motifs that may result from convergent evolution. The statistical
significance of alignment can be established by estimating the likelihood that the similarity
between two sequences is due to their divergence from a common ancestor, rather than pure
accident. First, the query sequence and the potentially homologous sequence are searched
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Database Searches and Pairwise Alignments 13

for a series of similar amino acid residues or residue patterns that are in the same order.
Then, gaps are inserted between the residues and sequence fragments are shifted so that
residues with identical or similar characters in both sequences are aligned in successive
columns. If two sequences are indeed homologous (i.e. they diverged from a common
ancestor), matches in the alignment represent residues that have been conserved in the
evolution, while mismatches can be interpreted as point mutations and gaps as indels (that
is, insertion or deletion mutations) introduced in one or both lineages in the time since they
diverged from one another. The biological relevance of sequence alignment is usually as-
sessed by comparison with a structure-based alignment, in which residues are considered
homologous if they are spatially superimposable. Structural alignments are considered
a ‘gold standard’ in bioinformatics (review: 69). Since only a small fraction of protein
sequences have known structures, the accuracy of sequence alignment measured on the
references is merely an estimation of how well a given algorithm reproduces a structurally
correct alignment for a collection of standard datasets.

There are two types of algorithms for sequence alignment based on dynamic program-
ming: global Needleman-Wunsch70 and local Smith-Waterman.71 In global alignment, an
attempt is made to align the entire sequence, using as many matching amino acid residues
as possible, up to both ends of each sequence. Thus, best candidates for global alignment
are sequences that are approximately the same length. In local alignment, stretches of
sequence with the highest density of matches are aligned, thus generating one or more
‘islands’ of matches or subalignments in the aligned sequences. Local alignments are more
suitable for aligning sequences that are similar along some of their lengths but dissimilar
in others and/or sequences that differ in length. Local alignment is particularly useful for
identification of regions of homology between proteins composed of different domains,
i.e. sequences that are only partially homologous. Such multidomain proteins are very
common in Eukaryota, in contrast to Prokaryota (Bacteria and Archaea), which are more
frequently composed of single domains and exhibit ‘global’ homology.

The above methods of establishing sequence relationships have been utilized in database
similarity searches. In the initial step the query sequence is compared to every sequence in
the selected database, and similar sequences are identified. Pairwise alignments between
the target sequence and the best-matching database entries are constructed, typically using
dynamic programming algorithms, and scored. Although percent identity of amino acid
residues between two sequences is intuitive and easy to calculate, it is a poor measure
of protein similarity, especially for more diverged sequences. Protein alignments are typ-
ically aligned and scored using substitution matrices that reflect statistical probabilities
of one residue being substituted by another. PAM72 (and its newer versions Gonnet73 or
Jones-Taylor-Thornton/JTT74) and BLOSUM75 are the two most commonly used types of
matrices, with PAM being based on an evolutionary model and extrapolation of probabil-
ities calculates for closely related sequences and BLOSUM based on alignments of more
remotely related sequences. Different matrices allow for detecting sequences with varying
levels of divergence. A scoring function includes also penalties for the introduction of gaps
corresponding to insertion or deletion (indel) mutations. Finally, statistical methods are
used to determine the likelihood of a particular alignment between sequences or sequence
regions arising by chance, given the size and composition of the database being searched.
Alignments that have a low probability of occurrence by chance are interpreted as likely
to indicate homology. However, the likelihood of finding a given alignment by chance can
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14 The Basics of Protein Sequence Analysis

vary significantly depending on the size and composition of the database. For the search
for homologs to be effective and the score to be accurately estimated, the database must
contain many unrelated sequences. It is important to remember that pairwise similarities
(especially if confined to very short regions) can also reflect convergent evolution or simply
coincidental resemblance. Thus, repetitive sequences in the database or query can distort
both the search results and the assessment of statistical significance.

The most popular methods for sequence database searches (Table 1.3) are FASTA76

and BLAST.77 They identify a series of short non-overlapping subsequences in the query
sequence that are then matched to candidate database sequences. Query-database matches
are subsequently extended and combined into a local pairwise alignment using a varia-
tion of the Smith-Waterman algorithm. Both FASTA and BLAST employ extreme value
distributions to estimate the distribution of the scores between the query and the database
entries and a probability of a random match.78,79 The result of a database search is a list of
pairwise alignments ranked according to the expectation value (E) that represents a number
of sequences that are not related to the query sequence and are predicted to produce as good
an alignment score as the query sequence. As a rule of thumb, alignments that exhibit small
E value (<0.001 for large databases), presence of long stretches of aligned regions without
gaps, and absence of low-complexity regions are likely to indicate homology. Nonetheless,
homologous sequences can be so diverged that their pairwise similarity scores are in the
range of random noise.

Detection of more remote relationships requires taking into account not only individual
sequence pairs, but also analyzing similarities in the context of entire families of homol-
ogous proteins. For instance, PSI-BLAST (Position-Specific Iterated BLAST) allows for
finding very distant relatives of a protein by first invoking regular BLAST and retrieving
statistically significant alignments, calculating a ‘sequence profile’, or a position-specific
score matrix (PSSM) that describes the frequency of amino acids found at each position
in aligned sequences, and then searching the database using this matrix.80 Alternatively
to PSSMs, the set of query-database alignments can be used to create a Hidden Markov
Model (HMM), which also can be iteratively compared with the database to identify new
statistically significant matches (as implemented in methods such as HMMER81). The list
of detected statistically similar (and presumably homologous) sequences aligned to the
query can be then updated with new sequences and searches can be carried out in an
iterative fashion until no new sequences are reported with the similarity score above the
threshold of statistical significance. It must be emphasized that in rounds >1 the similarity
scores are calculated with respect to the whole group of aligned sequences (represented by
PSSM or a HMM) rather than to the single query sequence, therefore erroneous addition of
unrelated sequences at an early stage of the search can lead to further degeneration of the
result and inclusion of many false positives. Thus, e.g. for PSI-BLAST it is recommended
to initialize searches with a stringent E-value threshold for inclusion of database sequences
in the query PSSM (e.g. 10−20-10−3 for typical protein families), and progressive relax-
ation of the threshold (to e.g. 10−3) in subsequent iterations, depending on the number of
reported sequences and their similarity to the query.

The ‘intermediate sequence search’ (ISS) strategy82,83 is an alternative to profile-based
methods. It employs a series of database searches initiated with the query and then con-
tinued in a pairwise manner with its homologs. Saturated BLAST is a freely available
software package that performs ISS with BLAST in an automated manner.84 Since all
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16 The Basics of Protein Sequence Analysis

homologs are used as search targets, this strategy is computationally demanding, but it can
identify links to remotely related outliers, which may be missed by MSA-based profile
or HMM searches that preferentially detect typical sequences. A variant of ISS strategy
that includes profile-sequence searches with PSI-BLAST and attempts to extract remote
homologs from alignments reported with scores below the level of statistical significance,
has been implemented in the method SENSER.85

The introduction of profile-based methods, in particular PSI-BLAST, has truly revolu-
tionarized the field of evolutionary bioinformatics, resulting in characterization of numer-
ous conserved domains and detection of remote homologies between many sequences and
sequence families that were undetectable in pairwise searches.86,87 It has also prompted
development of several databases of protein families or protein domains (see below),
accompanied by the appearance of special bioinformatics tools for searching of these
databases. One example is RPS-BLAST (Reverse Position-Specific BLAST) implemented
in the IMPALA package,88 which, as its name implies, reverses the PSI-BLAST approach
by comparing a single query sequence against a collection of PSSMs pre-calculated for
a number of previously characterized protein families, to determine whether the query
sequence is likely to belong to one of these families. Currently the most widely used al-
gorithms for sequence database searches (apart from still extremely popular PSI-BLAST)
belong to the newer generation of methods that carry out profile-profile comparisons and
allow for detection of even more remote relationships than profile-sequence comparisons.
These tools are typically available as web servers; they parse the query sequence pro-
vided by the user, automatically run PSI-BLAST to retrieve a profile corresponding to
reliably identified candidate homologs (i.e. the query family), and compare it with profiles
pre-calculated for a large number of protein families. Examples include PROF SIM,89

COMPASS,90 and HHsearch.91 Profile-profile search methods have been also adapted to
assist in template-based protein structure prediction (described in more detail in chapter
by Kosinski et al.). The last generation of methods for automated database searches is
represented by HHsenser, which combines SENSER-like exhaustive intermediate profile-
sequence searches with HHsearch-like pairwise comparison of HMMs.92

Once an initial search for homologs of the query sequence is performed, the detected
sequences are extracted from the database. Database searches are usually carried out with
local alignment programs and extraction of sequences results in retrieval of full length en-
tries from database. Outside the homologous region that has been detected by a local search
these sequences may contain regions that are non-homologous to the query, or regions that
are homologous to the query but local alignment methods failed to detect them. As men-
tioned earlier, database searches may result in retrieval of false positives, i.e. sequences
that exhibit similarity score above the threshold (e.g. due to biased sequence composition),
but nonetheless are not true homologs of the query. Besides, all major databases contain
redundant multiple copies of the same protein that differ by only a few residues (e.g. vari-
ants with alternative translation codons or results of different sequencing experiments) or
exhibit various errors (e.g. terminal truncations or indels caused by incorrect prediction of
gene boundaries or exon/intron structure). Such incorrect or redundant sequence variants
have to be removed from the preliminary sequence dataset (or corrected, if need be) prior
to any advanced analyses. Identification of erroneous sequences is best done at the level of
global multiple sequence alignment, which facilitates visualization of missing or redundant
regions corresponding to erroneous deletions and insertions. Although there exist a number
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of fully automated methods for multiple sequence alignment (MSA, see below), thus far
no method allows for automated ‘purging’ of the alignment of all incorrect sequences and
this stage has to be done manually, with the aid of methods for graphical representation and
editing of alignments. Such analysis becomes very difficult when the number of sequences
to be analyzed is significantly larger than 100, and the workstation’s screen becomes too
small to display them all. On the other hand, identification of redundant sequences is best
done by clustering analysis which may or may not require prior calculation of the MSA,
and is capable of processing large number of sequences. In our experience, the most useful
procedure is to carry out general clustering first to identify major subgroups (potential fami-
lies) that are possible to handle by alignment editors, followed by calculation and editing of
MSA for each subgroup, followed by merging of all edited sequence groups and repeating
MSA and carrying out final quality checks. Below, we describe in more detail methods for
MSA-independent sequence clustering, MSA construction, and for MSA-based calculation
of phylogenetic trees.

1.6 Sequence Clustering

It is well known that protein families can be classified into subfamilies using phylogenetic
analysis to calculate a hierarchy of relationships. The traditional representation of this
hierarchy is a treelike dendrogram, with individual elements (‘leaves’) at one end and a
single cluster containing every element (‘root’) at the other. Phylogenetic analysis requires,
however, the availability of MSA and intensive calculations to obtain evolutionary distances
and generate an accurate treelike representation of mutual relationships within the protein
family. There have been many attempts to circumvent this problem, in particular by using
various ‘surrogate’ measures of pairwise sequence similarity, rather than evolutionary
distances, and by applying various hierarchical clustering techniques to build treelike
representations.

An important step in clustering is to select a distance measure, which will determine
how the similarity of two elements is calculated. Sequence clustering algorithms typically
employ the value of pairwise sequence similarity, e.g. calculated by BLAST or the Smith-
Waterman algorithm (see above) and aim at identifying groups of sequences that are more
similar to each other than to other members of the input set. Typically, the aim of protein
sequence clustering is to identify groups of homologs exhibiting statistically significant
similarity, thus the threshold value for cutting the tree should correspond to the desired
evolutionary distance (e.g. to split a superfamily into families and then into subfamilies).
An appropriate cutoff should also separate true homologs from non-homologs, which can
be used to purge the initial dataset from potential false positives. Clustering can also be used
to split a group of functionally similar but not necessarily evolutionarily related proteins
into subgroups of homologs that are further analyzed independently from each other. The
presence of well-characterized proteins within a family can then allow one to reliably
assign functions to other family members whose functions are not known or not well
understood. Finding proteins with different functions within the same family may suggest
caution in extrapolating functional information. On the other hand, finding families with
only uncharacterized members may prompt them as sources of interesting candidates for
experimental analyses.
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Single linkage (SL) clustering is a simple and intuitive algorithm, in which the distance
between two clusters is computed as the distance between the two closest elements in
these clusters. It has been implemented e.g. in the BLASTCLUST method from the pop-
ular BLAST package80 (ftp://ftp.ncbi.nih.gov/blast/, also available via a third-party web
server http://toolkit.tuebingen.mpg.de/blastclust/). The SL algorithm is known to produce
accurate clustering when different subgroups show similar level of internal similarity and
an appropriate threshold is given to separate families from each other. A drawback of this
method is that clusters may be forced together due to single elements being similar to
each other, even though other elements in each cluster may be dissimilar to each other.
Thus, the SL analysis is not appropriate for analyzing sets of largely non-homologous
multidomain proteins, which may be falsely chained to each other (e.g. a cluster of many
proteins comprising domain A and one protein with domains A and B may be chained to a
cluster composed of proteins with domain B and one protein with domains B and C, then
chained to a cluster of domains C and so on). In particular, many proteins possess small,
widespread protein domains (e.g. SH2, WD40, and DnaJ) that are known to have very
different functions. The presence of such a common domain within a group of proteins
does not necessarily imply that these proteins perform the same function. Ideally, these
types of proteins should be classified into a single cluster only if they exhibit highly similar
domain architectures. Another drawback is that in many protein superfamilies the degree
of similarity within different families varies greatly, and e.g. subfamilies within one family
may be more diverged from each other than two other families. Therefore, application
of only one average threshold may produce many too small clusters and a few too large
clusters.

Due to the fact that SL method has difficulty in detecting an appropriate threshold
for identification of clusters, modern protein clustering applications employ other algo-
rithms. In particular graph theory allows the classification of objects into groups based on
a global treatment of all relationships in similarity space simultaneously. Thus, proteins
and their similarities may be represented as vertices and edges of a graph, respectively,
and the initial partition produced, e.g. by SL clustering, may be post-processed by a graph
partitioning algorithm (see Chapter 10 by Nabieva and Singh in this volume for a de-
tailed discussion of different clustering algorithms, in the context of graphs representing
networks of protein–protein interactions). CLANS (CLuster ANalysis of Sequences)93

(ftp://ftp.tuebingen.mpg.de/pub/protevo/CLANS) is a freely available Java application,
which runs all-against-all BLAST searches for all sequences in the input set, and then
applies the Fruchterman–Reingold graph layout algorithm to visualize pairwise sequence
similarities based on BLAST P-values in either two-dimensional or three-dimensional
space. CLANS allows the user to select different thresholds and parameters for calculation
of distances and to carry out clustering using several different algorithms, including single
and multiple linkage, network-based, and convex clustering. LGL94 is a similar clustering
algorithm with a Java front end for visualization, however it requires pre-computed simi-
larity values as an input. ProClust (http://pig-pbil.ibcp.fr/magos)95 is another graph-based
clustering algorithm, which scales similarity values based on the length of the protein
sequences compared, and takes into account the significance of alignment scores to filter
for spurious links. Post-processing to merge clusters is based on comparison of clusters
with each other using profile-HMMs (see further sections in this chapter for review of
methodology for profile-profile comparisons). MCL96 relies on the Markov cluster (MCL)
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algorithm, which finds clusters by calculating the probabilities associated with a transition
from one protein to another within the graph and passing the matrix of probabilities through
iterative rounds of ‘multiplication’ and ‘inflation’ until convergence. The ‘inflation’ value
parameter is used to control the ‘tightness’ of final clusters. The MCL algorithm is relatively
insensitive to the presence of multi-domain proteins, promiscuous domains or fragmented
sequences. Super Paramagnetic Clustering (SPC)97 (http://www.vcclab.org/lab/spc/) is a
different approach that clusters input data based on analogy to the physics of an in-
homogeneous ferromagnet; a stepwise implementation of this algorithm, called global
SPC (gSPC) was shown to be even more robust than TRIBE-MCL. FlowerPower98

(http://phylogenomics.berkeley.edu/cgi-bin/flowerpower/input flowerpower.py) has been
designed specifically for the identification of subfamilies with global homology (e.g. from
a set of sequences with different domain compositions) using the SCI-PHY algorithm based
on HMMs.99 Finally, unlike other methods that calculate their similarity matrices based
on alignments, CLUSS100 (http://prospectus.usherbrooke.ca/CLUSS/) performs clustering
based on a matching amino acid subsequences, which makes it applicable both to alignable
and unalignable sequences, e.g. products of circular permutation etc. A number of other
clustering approaches have been used to cluster various sequence data sets and construct
databases of clusters (see the section on protein family databases); however, the underlying
clustering programs have not been made available as standalone applications.

1.7 Multiple Sequence Alignment

As soon as sets of homologous sequences with similar domain composition are identified,
or the domain subsequences isolated from non-homologous fragments, they can be aligned
together to study sequence conservation across the entire family. Multiple sequence align-
ment (MSA) is an extension of pairwise alignment, in which multiple related sequences
are optimally matched, by bringing the greatest number of similar characters into register
in the same column. In this manner, protein sequences are arranged into a rectangular
array with the goal that residues in a given column are homologous (derived from a single
position in an ancestral sequence), superimposable (in a structural alignment) or play a
common functional role. The advantage of the MSA is that it reveals more biological
information than a set of pairwise alignments, e.g. conserved patterns and motifs that
are common to the whole sequence family and may indicate functionally or structurally
important elements. However, finding an optimal alignment of more than two sequences
that includes matches, mismatches, and gaps, and that takes into account the degree of
variation in all of the sequences at the same time, is very difficult. Usually, an arrangement
of amino acid residues that maximizes the sum of similarities for all pairs of sequences
(the sum-of-pairs, or SP, score) is sought. Unlike in pairwise alignments, the SP score
has no rigorous theoretical foundation for the MSA and, in particular, fails to incorporate
an evolutionary model. Moreover, the dynamic programming algorithm used for optimal
alignment of pairs of sequences can be extended to multiple sequences, but the compu-
tational time and memory required to maximize the SP score has been shown to scale
exponentially with the number of sequences and becomes prohibitively expensive for data
sets larger than a few proteins.101 Thus, approximate alternatives are used. The majority of
programs (Table 1.4) are based on the ‘progressive algorithm’ approach, where the MSA
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22 The Basics of Protein Sequence Analysis

is constructed by a series of pairwise alignments, starting with the most related sequences,
followed by progressively adding less related sequences (to construct partial alignments of
three or more sequences) or aligning partial alignments with each other.102

The knowledge of evolutionary relationships among sequences is a very useful criterion
for selecting the order of pairwise alignments. Although the calculation of a phylogenetic
tree requires the availability of the MSA (see below), an initial tree for construction of
the MSA may be calculated based on preliminary evolutionary distances calculated from
pairwise comparisons of sequences. The major problem with progressive alignment pro-
grams is the dependence of the ultimate MSA on the initial pairwise sequence alignments.
The more distantly related these sequences, the more errors will be made, and these errors
will be propagated to the MSA. Two main techniques are utilized to correct or minimize
mistakes made in the progressive alignment process. One is iterative refinement of the
MSA, e.g. by repeatedly dividing the aligned sequences into subgroups and realigning the
subgroups, as implemented in PRRN.103 The other technique makes a consistency measure
among a set of pairwise sequence alignments before the progressive alignment steps.104

Many methods combine iterative optimization with either progressive algorithm and/or
consistency-based scoring (review: 105). An alternative approach for MSA, which does not
require calculation of trees, relies on identification of locally conserved patterns found in
the same order in the sequences (e.g. as implemented in the DIALIGN method106).

Another possibility is to employ a HMM, a statistical model in which an MSA is rep-
resented as a form of directed acyclic graph (also called a partial-order graph), which
consists of a series of nodes representing possible entries in the columns of an MSA. In
this representation a column that contains the same residue in all sequences is coded as a
single node with as many outgoing connections as there are possible characters in the next
column of the alignment. Sequences are aligned using the Viterbi algorithm, a variant of a
dynamic programming algorithm. Several software programs are available in which vari-
ants of HMM-based methods have been implemented, including SAM and HMMER (see
Table 1.4). Some of these methods allow for the presence of non-alignable (non-
homologous) regions of sequence to be present in the input set. In the approach implemented
in AliWABA the graph may contain cycles, which enables alignment of protein sequences
with shuffled and/or repeated domain structure.107

Currently the best methods for MSA such as SPEM108 or PROMALS109 employ PSI-
BLAST database searches and secondary structure prediction to construct meta-profiles
for all input sequences, then carry out profile-profile alignments (with HMMs or with
regular profile methods), often refine these alignments based on consistency scoring, and
only then combine the input sequences into an MSA. These methods are therefore much
slower than simple (but still very popular) methods like CLUSTAL, but are much more
accurate, at least for individual domains. However, they might be more prone to errors in
case of data sets comprising proteins of uneven length, e.g. some with single domains, and
others with the same domain fused to others. Therefore, comparison of MSAs generated
with different methods may provide hints as to reliability of the results. As with most
bioinformatics methods, algorithms for MSA rarely generate solutions that ideally reflect
the biological reality, especially for large datasets of strongly diverged sequences. However,
expert knowledge concerning relationships within a given protein family can be used to
improve suboptimal MSAs obtained from automatic software packages. A number of
methods exist that allow for graphical visualization and manual editing of MSAs to make
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them agree with observations that cannot be easily incorporated into the scoring function
of most algorithms (e.g. knowledge that particular residues in different sequences that must
correspond to each other or agreement of structural patterns obtained from experiment or
from predictions). Example tools for displaying and editing protein (often also nucleic
acid) sequences and alignments have been listed in Table 1.4.

1.8 Relationship of Multiple Sequence Alignments to Phylogenetic Analysis

A biologically meaningful MSA contains sequences that are all homologous, i.e. derived
from a common ancestor sequence. Further, in an ideal MSA, all columns contain amino
acid residues that were derived from an ancestral residue in the ancestral sequence (if
these conditions are not fulfilled, MSA is ‘biologically wrong’ and cannot be used for
phylogenetic analyses). Within the column are original characters that were present early,
as well as other derived characters that appeared later in evolutionary time. In some cases,
the position is so important for function that mutational changes are not observed. It is
these conserved positions that usually serve as ‘anchor points’ for producing an alignment.
In other cases, the position is less important, and substitutions are observed. Deletions and
insertions are also typically more frequent in the variable regions of the alignment. If the
sequences in the MSA show evident similarities (e.g. >30% identity and relatively few
insertions and deletions), they are likely to be recently derived from a common ancestor
sequence. Conversely, sequences with multiple differences are likely to be remotely related.
Thus, the number and types of changes in the MSA may be used to infer the mutations that
occurred during the evolution of the sequence family. It is also possible to dissect the order
of appearance of the sequences during evolution and to relate the relationships between
sequences to the relationships between their hosts (organisms). A number of packages
for phylogenetic calculations based on user-defined MSAs have been made available,
including PHYLIP (http://evolution.genetics.washington.edu/phylip.html),146 MEGA
(http://www.megasoftware.net/),147 PHYML (http://atgc.lirmm.fr/phyml/),148 PAML
(http://abacus.gene.ucl.ac.uk/software/paml.html),149 TREE-PUZZLE150 (http://www.
tree-puzzle.de), or MrBayes151 (http://mrbayes.csit.fsu.edu). Among web resources, Mul-
tiPhyl (http://www.cs.nuim.ie/distributed/multiphyl.php)152 is a particularly useful site,
which allows the users to carry out computationally very expensive inference of Maxi-
mum Likelihood trees using distributed computing. A review of methods for phylogenetic
calculations is outside the scope of this chapter, interested readers should consult reviews:
e.g. ref. 153–155

The result of phylogenetic analysis can be used as a feedback for revising particularly
challenging MSAs that are suspect of errors (e.g. sequences may be split it into sub-
groups and realigned separately or the tree may be used to guide the progressive alignment
algorithm). As an example, the SCI-PHY server (http://phylogenomics.berkeley.edu/SCI-
PHY/) allows users to upload a MSA for subfamily identification and subfamily HMM
construction.99 Further, analysis of the phylogenetic tree in connection with the known (or
assumed) tree of hosts (organisms) can be used to deduce major evolutionary events in the
protein family, e.g. gene duplications, gene losses, which provide the basis for discrimina-
tion between orthologs and paralogs and may guide functional predictions (review: 156). An-
other application of MSA and phylogenetic analysis is the inference of ancestral sequences,
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with methods such MrBayes or ANCESCON (ftp://iole.swmed.edu/pub/ANCESCON/)157

(review: ref. 158).

1.9 Prediction of Domains

It has been reported that around 65% or eukaryotic and around 40% of prokaryotic proteins
are composed of two or more globular domains.159 In addition, 30–60% of eukaryotic
proteins are predicted to contain long stretches of disordered residues.160 Unfortunately,
many experimental as well as computational techniques work effectively only on single
domains. For instance, experimental structure determination using NMR and in many
cases also X-ray crystallography is more successful for isolated globular domains, devoid of
disordered regions, rather than for complete multi-domain proteins, unless their constituent
parts form a tight complex. Also, many computational methods for protein sequence
alignment, phylogenetic analyses (see above), or three-dimensional structure prediction
(fold recognition and de novo folding – see chapters by Kosinski et al. and by Gront
et al. in this volume) have been designed to work with single domains and may produce
erroneous results when presented with multidomain proteins. Thus, identification of domain
boundaries from amino acid sequence (hereafter referred to as 1D domain prediction) is an
essential step in many protein analyses. However, as mentioned earlier, there is no precise
definition of what constitutes a domain even if the structure is known; therefore 1D domain
prediction from sequence without structural information presents a great challenge and
interpretation of results must consider a certain degree of fuzziness.

Jones and coworkers161 have classified 1D domain prediction methods into three broad
and partially overlapping classes, analogous to 3D structure prediction methods: domain
homology prediction, domain recognition (these two classes can be considered ‘template-
based’), and new domain (‘template-free’) prediction methods. The most effective way of
domain prediction is by detecting its homology to known domain structures (e.g. those
classified in SCOP or CATH databases) or to domains from manually curated sequence
databases, such as Pfam or CDD (Table 1.1). Main problems in predicting homology occur
when the domain is discontinuous (e.g. in the case of insertion of another domain), exhibits
circular permutation or forms an evolutionarily conserved module with another associated
domain. In this context it must be remembered that some of the entries in domain databases
correspond in fact to evolutionarily conserved modules that comprise several structural
domains. For sequence regions that cannot be assigned to known domain ‘by homology’,
domain recognition methods can be used. One approach is to apply 3D fold-recognition
methods that allow for prediction of structural similarity to known domain structures due to
extremely distant homology and sometimes also due to analogy (see Chapter 4 by Kosinski
et al.) Another approach is to predict secondary structure for the query sequence (see
Chapter 2 by Majorek et al.) and search for known domains with similar patterns. Finally,
new domain prediction rely either on machine learning methods for recognition of sequence
features that generally characterize domains or on methods for de novo folding (see Chapter
5 by Gront et al.) that generate a set of possible tertiary structures, in which compact units
are identified. This last class of method is extremely computationally expensive. A list of
currently available web servers is shown in Table 1.5; besides, some of domain databases
mentioned in Table 1.1 have their own search utilities.
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As with most of bioinformatics predictions, the recommended protocol for 1D domain
prediction involves application of the consensus rule. A meta-server for domain predic-
tion Meta-DP has been developed162 that allows for comparison and averaging of results
reported by several algorithms. However, the best results are achieved if 1D domain predic-
tion is carried out hierarchically, starting with the template-based methods, followed by the
more demanding (and more error-prone) de novo methods. This hybrid approach has been
already implemented in a few fully automated methods that were shown to outperform
individual methods within the framework of the CASP competition. Examples include
DOMAC163 (available as a server, see Table 1.5) and DP Hybrid (comprising Ginzu and
RosettaDOM,164 components of the Rosetta suite, not available as a standalone server).

1.10 Summary

In this chapter we discussed methods for primary structure analysis of proteins, including
identification of short motifs, database searches to detect significantly similar sequences
(candidate homologs), sequence clustering to identify protein families regions of homology
to sequences, multiple sequence alignment, and identification of globular domains. We
have not covered the issue of predicting non-globular or disordered regions and secondary
structure prediction, as these analyses are reviewed in depth in another chapter in this
volume (Majorek et al.). In addition to reviewing theory, we provided tables summarizing
different programs dedicated to carry out various types of sequence analyses. These are
mostly web servers, and some standalone packages for local installation. We must mention,
however, that many databases and methods that have been described in the literature and
used to be available as web servers, have now disappeared from the Internet or at least
have not been available during preparation of this chapter, therefore were omitted from
the tables. It is also expected that with time some of the methods mentioned here will also
completely disappear or will move to different websites; on the other hand, new interesting
methods will be made available. The readers / potential users are therefore encouraged to
consult the periodically updated collections of web servers e.g. the annual special issue
of Nucleic Acid Research (http://nar.oxfordjournals.org/) and the Bioinformatics Links
Directory, (http://bioinformatics.ca/links directory/).

There are several considerations in choosing a set of programs to analyze a sequence
of interest, including biological accuracy, complexity of the analysis and time required to
complete it (without asking a sequence analysis expert for help), and software/hardware
usage. In Figure 1.2 we present a flowchart illustrating the recommended protocol of
protein sequence analysis, from basic searches to domain prediction, which can be used
to generate input data for more subsequent computational or experimental analyses. If
the aim is simple, e.g. to obtain an approximate sequence alignment of a few homologs
and illustrate the most obvious motifs (both SMs and LMs), then a simple sequence
search (e.g. with BLAST) of one of protein family/domain databases is often sufficient
to check, whether an annotated data set is already available for download, without the
need to carry out new analyses. However, we suggest that web servers for identification
of motifs should be queried, as they often provide information that is more up to date
than pre-calculated data sets in family databases. In case of novel sequences that are
not yet present in major databases, a PSI-BLAST search of one of sequence databases
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Figure 1.2 Suggested workflow for protein sequence analysis. Basic sequence analyses in-
volve usually some or all of five tasks: (1) identification of locally similar sequences in databases
(here, sequences with decreasing level of similarity are indicated by fading shades of gray)
followed by retrieval of full-length sequences and their clustering to identify families, and fi-
nally MSA of the family; (2) identification of motifs (LMs and SMs); (3) prediction of putative
domains; (4) prediction of secondary structure; (5) prediction of disordered/ordered regions.
Tasks (4) and (5) are reviewed in Chapter 2 by Majorek et al. in this volume. Subsequently,
results from these analyses (as well as useful data and predictions from other sources, if avail-
able) are combined and individual domain families may be subjected to detailed structural
and phylogenetic analyses. Alternatively, predicted domain structure may be used to carry
out another round of basic analyses, with adjusted parameters (e.g. new database searches,
with correction for compositionally biased sequence, and e.g. removed N-terminal region or
protein sequence split into individual domains)

(e.g. nr at the NCBI) is recommended, to be followed by clustering of the extracted
homologs and identification of the putative orthologous family, which may be aligned
using one of the recent methods for MSA calculation. In parallel, domain databases should
be searched by sensitive profile methods to detect potential presence of known domains. If
no evident similarity to known protein families or domains is observed, domain prediction
methods should be used, preferably in connection with prediction of disordered regions
and secondary structure. If the aim of the analysis is an experimental characterization
of protein function, such combination of methods is usually sufficient to delineate major
domains and conserved regions. However, if an advanced comparative analysis is desired,
e.g. calculation of a phylogenetic tree or prediction of protein structure, the MSA must
be carefully refined to remove or ‘mask’ unalignable (e.g. non-homologous) regions.
For multidomain proteins domain boundaries must be judiciously localized, and domains
should be submitted independently for phylogenetic and modeling calculations, unless
there are specific reasons to believe that a set of domains should be analyzed together
(e.g. if it forms an evolutionarily conserved module). At all stages of analysis (perhaps
with the exception of database searches), we recommend using several alternative methods
and comparing their results. As a rule of thumb, consistency between different algorithms
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indicates higher likelihood that a given result is close to optimal. On the other hand,
automatically generated results are seldom ideal and they can be often improved by human
experts. Finally, it must be remembered that uncorrected errors tend to accumulate, and
‘higher level’ methods usually assume that their input is error-free, thus it is very important
to carefully check results returned by all automated methods before submitting them to
next, usually more time-consuming stages.
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