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Association Between Telomere Length and Risk of Cancer and 
Non-Neoplastic Diseases: A Mendelian Randomization Study

The Telomeres Mendelian Randomization Collaboration

Abstract

Importance—The causal direction and magnitude of the association between telomere length 

and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of 

observational studies to confounding and reverse causation.

Objective—To conduct a Mendelian randomization study, using germline genetic variants as 

instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and 

non-neoplastic diseases.

Data Sources—Genomewide association studies (GWAS) published up to January 15, 2015.

Study Selection—GWAS of noncommunicable diseases that assayed germline genetic variation 

and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS 

of noncommunicable diseases identified, summary data from 103 were available.

Data Extraction and Synthesis—Summary association statistics for single nucleotide 

polymorphisms (SNPs) that are strongly associated with telomere length in the general population.

Main Outcomes and Measures—Odds ratios (ORs) and 95% confidence intervals (CIs) for 

disease per standard deviation (SD) higher telomere length due to germline genetic variation.

Results—Summary data were available for 35 cancers and 48 non-neoplastic diseases, 

corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 

6789 per disease). Increased telomere length due to germline genetic variation was generally 

associated with increased risk for site-specific cancers. The strongest associations (ORs [95% CIs] 

per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 

(3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung 

adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 

(1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 

(1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers 

and at tissue sites with lower rates of stem cell division. There was generally little evidence of 

association between genetically increased telomere length and risk of psychiatric, autoimmune, 

inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 

0.78 [95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [95% CI, 0.49-0.81]), celiac 

disease (OR, 0.42 [95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [95% CI, 

0.05-0.15]).

Kidney Disease Diabetes Research Center grant DK063491 to the Southern California Diabetes Research Center. No other conflicts 
reported.
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Conclusions and Relevance—It is likely that longer telomeres increase risk for several 

cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.

At the ends of chromosomes, telomeres are DNA-protein structures that protect the genome 

from damage, shorten progressively over time in most somatic tissues,1 and are proposed 

physiological markers of aging.2,3 Shorter leukocyte telomeres are correlated with older 

age, male sex, and other known risk factors for noncommunicable diseases4–6 and are 

generally associated with higher risk for cardiovascular diseases,7,8 type 2 diabetes,9 and 

nonvascular, nonneoplastic causes of mortality.8 Whether these associations are causal, 

however, is unknown. Telomere length has also been implicated in risk of cancer, but the 

direction and magnitude of the association is uncertain and contradictory across 

observational studies.10–14 The uncertainty reflects the considerable difficulty of designing 

observational studies of telomere length and cancer incidence that are sufficiently robust to 

reverse causation, confounding, and measurement error.

The aim of the present report was to conduct a Mendelian randomization study, using 

germline genetic variants as instrumental variables for telomere length, to help clarify the 

nature of the association between telomere length and risk of cancer and non-neoplastic 

diseases. The approach, which mimics the random allocation of individuals to the placebo 

and intervention arms of a randomized clinical trial, allowed us to: (1) estimate the direction 

and broad magnitude of the association of telomere length with risk of multiple cancer and 

non-neoplastic diseases; (2) appraise the evidence for causality in the estimated etiological 

associations; (3) investigate potential sources of heterogeneity in findings for site-specific 

cancers; and (4) compare genetic estimates with findings based on directly measured 

telomere length in prospective observational studies.

Methods

Study Design

The design of our study, illustrated in eFigure 1 in Supplement 1, had 3 key components: (1) 

the identification of genetic variants to serve as instruments for telomere length; (2) the 

acquisition of summary data for the genetic instruments from genomewide association 

studies (GWASs) of diseases and risk factors for noncommunicable diseases; and (3) the 

classification of diseases and risk factors into primary or secondary outcomes based on a 

priori statistical power. As a first step, we searched the GWAS catalog15,16 on January 15, 

2015, to identify single-nucleotide polymorphisms (SNPs) associated with telomere length. 

To supplement the list with additional potential instruments, we also searched the original 

study reports curated by the GWAS catalog (using a P value threshold of 5 × 10−8).17–25 

We acquired summary data for all SNPs identified by our search from a meta-analysis of 

GWASs of telomere length, involving 9190 participants of European ancestry.18

The second key component of our design strategy involved the acquisition of summary data, 

corresponding to the selected genetic instruments for telomere length, from GWASs of 

noncommunicable diseases and risk factors (eFigure 1 in Supplement 1). As part of this step, 

we invited principal investigators of noncommunicable disease studies curated by the GWAS 

catalog15,26 to share summary data for our study. We also downloaded summary data for 
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diseases and risk factors from publically available sources, including study-specific 

websites, dbGAP, ImmunoBase, and the GWAS catalog (eFigure 1 in Supplement 1).

The third key component of our design strategy was the classification of diseases and risk 

factors into either primary or secondary outcomes, which we defined on the basis of a priori 

statistical power to detect associations with telomere length. Primary outcomes were defined 

as diseases with sufficient numbers of cases and controls for greater than 50% statistical 

power, and secondary outcomes were defined as diseases with 50% or less statistical power 

to detect odds ratios (ORs) of 2.0 or higher per standard deviation (SD) change in 

genetically increased telomere length (α assumed to be .01). All risk factors were defined as 

secondary outcomes. Risk factors with less than 50% statistical power were excluded.

Further details on our design strategy can be found in Supplement 1.

Comparison With Prospective Observational Studies

We searched PubMed for prospective observational studies of the association between 

telomere length and disease (see eTables 3 and 4 in Supplement 1 for details of the search 

strategy and inclusion criteria). Study-specific relative risks for disease per unit change or 

quantile comparison of telomere length were transformed to an SD scale using previously 

described methods.27 Hazard ratios, risk ratios, and ORs were assumed to approximate the 

same measure of relative risk. Where multiple independent studies of the same disease were 

identified, these were combined by fixed effects meta-analysis, unless there was strong 

evidence of between-study heterogeneity (Cochran Q P < .001), in which case they were 

kept separate.

Statistical Analysis

We combined summary data across SNPs into a single instrument, using maximum 

likelihood to estimate the slope of the relationship between βGD and βGP and a variance-

covariance matrix to make allowance for linkage disequilibrium between SNPs,28 where 

βGD is the change in disease log odds or risk factor levels per copy of the effect allele, and 

βGP is the SD change in telomere length per copy of the effect allele (see eAppendix 1 in 

Supplement 1 for technical details). The slope from this approach can be interpreted as the 

log OR for binary outcomes, or the unit change for continuous risk factors, per SD change in 

genetically increased telomere length. P values for heterogeneity among SNPs in the 

estimated associations of genetically increased telomere length with disease and risk factors 

were estimated by likelihood ratio tests.28 Associations between genetically increased 

telomere length and continuous risk factors were transformed into SD units. For 5 secondary 

disease outcomes where only a single SNP was available for analysis, we estimated 

associations using the Wald ratio: βGD/βGP, with standard errors approximated by the delta 

method.29

Inference of causality in the estimated etiological associations between telomere length and 

disease depends on satisfaction of Mendelian randomization assumptions (eFigure 7 in 

Supplement 1; also see eTable 5 in Supplement 1 for a glossary of terms).30,31 The 

assumptions are that (1) the selected SNPs are associated with telomere length; (2) the 

selected SNPs are not associated with confounders; and (3) the selected SNPs are associated 
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with disease exclusively through their effect on telomere length. If these assumptions are 

satisfied, the selected SNPs are valid instrumental variables, and their association with 

disease can be interpreted as a causal effect of telomere length. We modeled the impact of 

violations of these assumptions through 2 sets of sensitivity analyses: a weighted median 

function32 and MR-Egger regression (see eAppendix 1 in Supplement 1 for technical 

details).30 We restricted our sensitivity analyses to diseases showing the strongest evidence 

of association with genetically increased telomere length (defined as Bonferroni P ≤ .05).

We used meta-regression to appraise potential sources of heterogeneity in our findings for 

cancer. The association of genetically increased telomere length with the log odds of cancer 

was regressed on cancer incidence, survival time, and median age at diagnosis (downloaded 

from the National Cancer Institute Surveillance, Epidemiology, and End Results [SEER] 

Program33), and tissue-specific rates of stem cell division from Tomasetti and Vogelstein.34 

As the downloaded cancer characteristics from SEER correspond to the United States 

population, 77% of which was of white ancestry in 2015,35 the meta-regression analyses 

excluded genetic studies conducted in East Asian populations.

All analyses were performed in R, version 3.1.2,36 and Stata release 13.1 (StataCorp LP). P 
values were 2-sided, and evidence of association was declared at P < .05. Where indicated, 

Bonferroni corrections were used to make allowance for multiple testing, although this is 

likely to be overly conservative given the nonindependence of many of the outcomes tested.

Results

We selected 16 SNPs as instruments for telomere length (eFigure 1 in Supplement 1 and 

Table 1). The selected SNPs correspond to 10 independent genomic regions that collectively 

account for 2% to 3% of the variance in leukocyte telomere length, which would be 

equivalent to an F statistic of 18 to 28 in the sample used to define the instruments (Table 1). 

This indicates that the genetic instrument constructed from these 10 independent genomic 

regions is strongly associated with telomere length (details in eAppendix 1 in Supplement 

1).37 Summary data for the genetic instruments were available for 83 noncommunicable 

diseases, corresponding to 420 081 cases (median, 2526 per disease), 1093105 controls 

(median, 6789 per disease), and 44 risk factors (eFigure 1 and eTable 1 in Supplement 1; 

Table 2). The median number of SNPs available across diseases was 11 (minimum, 1; 

maximum, 13) and across risk factors was 12 (minimum, 11; maximum, 13). Of the 83 

diseases, 56 were classified as primary outcomes and 27 as secondary outcomes (Table 2; 

eFigure 1 and eTable 1 in Supplement 1). For 9 of the 83 noncommunicable diseases, 

additional summary data were available from 10 independent studies for replication 

analyses, corresponding to 40 465 cases (median, 1416 per disease) and 52 306 controls 

(median, 3537 per disease) (eTable 1 in Supplement 1).

The results from primary analyses of noncommunicable diseases are presented in Figure 1 

and the eTable in Supplement 2; results from secondary analyses of risk factors and diseases 

with low a priori power are presented in eFigures 2, 5, and 6 in Supplement 1. Genetically 

increased telomere length was associated with higher ORs (95% CIs) of disease for 9 of 22 

primary cancers (P < .05): glioma (5.27 [3.15-8.81]), endometrial cancer (1.31 [1.07-1.61]), 
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kidney cancer (1.55 [1.08-2.23]), testicular germ-cell cancer (1.76 [1.02-3.04]), melanoma 

(1.87 [1.55-2.26]), bladder cancer (2.19 [1.32-3.66]), neuroblastoma (2.98 [1.92-4.62]), lung 

adenocarcinoma (3.19 [2.40-4.22]) and serous low-malignancy-potential (LMP) ovarian 

cancer (4.35 [2.39-7.94]) (Figure 1). The associations were, however, highly variable across 

cancer types, varying from an OR (95% CI) of 0.86 (0.57-1.30) for head and neck cancer to 

5.27 (3.15-8.81) for glioma. Substantial variability was also observed within tissue sites. For 

example, the OR (95% CI) for lung adenocarcinoma was 3.19 (2.40-4.22) compared with 

1.07 (0.82-1.39) for squamous cell lung cancer. For serous LMP ovarian cancer, the OR 

(95% CI) was 4.35 (2.39-7.94) compared with 1.21 (0.87-1.68) for endometrioid ovarian 

cancer, 1.12 (0.94-1.34) for serous invasive ovarian cancer, 1.04 (0.66-1.63) for clear-cell 

ovarian cancer, and 1.04 (0.73-1.47) for mucinous ovarian cancer. The strongest evidence of 

association was observed for glioma, lung adenocarcinoma, neuroblastoma, and serous LMP 

ovarian cancer (Figure 1). Results for glioma and bladder cancer showed evidence for 

replication in independent data sets (independent data sets were not available for other 

cancers) (eFigure 3 in Supplement 1).

Genetically increased telomere length was associated with lower ORs (95% CIs) of disease 

for 6 of 32 primary non-neoplastic diseases (P < .05): coronary heart disease (0.78 

[0.67-0.9]), abdominal aortic aneurysm (0.63 [0.49-0.81]), Alzheimer disease (0.84 

[0.71-0.98]), celiac disease (0.42 [0.28-0.61]), interstitial lung disease (0.09 [0.05-0.15]) and 

type 1 diabetes (0.71 [0.51-0.98]) (Figure 1). The strongest evidence of association was 

observed for coronary heart disease, abdominal aortic aneurysm, celiac disease, and 

interstitial lung disease (Figure 1). The associations with coronary heart disease and 

interstitial lung disease showed evidence for replication in independent data sets (eFigure 3 

in Supplement 1).

Our genetic findings were generally similar in direction and magnitude to estimates based on 

observational prospective studies of leukocyte telomere length and disease (Figure 2).10,97 

Our genetic estimates for lung adenocarcinoma, melanoma, kidney cancer, and glioma were, 

however, stronger than the observational estimates.

In sensitivity analyses, we appraised the potential impact of confounding by pleiotropic 

pathways on our results. Associations estimated by the weighted median and MR-Egger 

were broadly similar to the main results for glioma, lung adenocarcinoma, serous LMP 

ovarian cancer, neuroblastoma, abdominal aortic aneurysm, coronary heart disease, and 

interstitial lung disease (eFigure 4 in Supplement 1). We found little evidence for the 

presence of pleiotropy, as indicated by the MR-Egger intercept test (eFigure 4 in Supplement 

1). The MR-Egger analyses were, however, generally underpowered, as reflected by the 

wide confidence intervals in the estimated odds ratios (eFigure 4 in Supplement 1).

In meta-regression analyses, we observed that genetically increased telomere length tended 

to be more strongly associated with rarer cancers and cancers at tissue sites with lower rates 

of stem cell division (Figure 3). The associations showed little evidence of varying by 

percentage survival 5 years after diagnosis or median age at diagnosis.
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Discussion

In this report, we show that genetically increased telomere length is associated with 

increased risk of several cancers and with reduced risk of some non-neoplastic diseases. 

Given the random distribution of genotypes in the general population with respect to 

lifestyle and other environmental factors, as well as the fixed nature of germline genotypes, 

these results should be less susceptible to confounding and reverse causation than those 

generated by observational studies. Our results could, however, reflect violations of 

Mendelian randomization assumptions, such as confounding by pleiotropy, population 

stratification, or ancestry.98 Although we cannot entirely rule out this possibility, the 

majority of our results persisted in sensitivity analyses that made allowance for violations of 

Mendelian randomization assumptions. Confounding by population stratification or ancestry 

is also unlikely, given the adjustments made for ancestry in the original disease GWASs (see 

eAppendix 1 in Supplement 1). Our results are therefore compatible with causality.

Comparison With Previous Studies

Our findings for cancer are generally contradictory to those based on retrospective studies, 

which tend to report increased risk for cancer in individuals with shorter telomeres.

11,12,99–102 The contradictory findings may reflect reverse causation in the retrospective 

studies, whereby shorter telomeres arise as a result of disease, or of confounding effects, eg, 

due to case patients being slightly older than controls even in age-matched analyses. Our 

findings for cancer are generally more consistent with those based on prospective 

observational studies, which tend to report weak or null associations of longer leukocyte 

telomeres with overall and site-specific risk of cancer,10–13,97,101,103–121 with some 

exceptions.122 Our results are also similar to previously reported Mendelian randomization 

studies of telomere length and risk of melanoma, lung cancer, chronic lymphocytic 

leukemia, and glioma.40,46,123,124 The shape of the association with cancer may not, 

however, be linear over the entire telomere length distribution. For example, individuals with 

dyskeratosis congenita, a disease caused by germline loss-of-function mutations in the 

telomerase component genes TERC and TERT have chronically short telomeres and are at 

increased risk of some cancers, particularly acute myeloid leukemia and squamous cell 

carcinomas arising at sites of leukoplakia,125,126 presumably due to increased 

susceptibility to genome instability and chromosomal end-to-end fusions.127 Our results 

should therefore be interpreted as reflecting the average association at the population level 

and may not be generalizable to the extreme ends of the telomere length distribution.

Mechanisms of Association

Our cancer findings are compatible with known biology.127 By limiting the proliferative 

potential of cells, telomere shortening may serve as a tumor suppressor, and individuals with 

longer telomeres may be more likely to acquire somatic mutations owing to increased 

proliferative potential.127 Rates of cell division are, however, highly variable among tissues,

34 and thus the relative gain in cell proliferative potential, conferred by having longer 

telomeres, may also be highly variable across tissues. This could explain the approximately 

6-fold variation in ORs observed across cancer types in the present study as well as the 

tendency of our results to be stronger at tissue sites with lower rates of stem cell division. 
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For example, the association was strongest for glioma (OR, 5.27) and comparatively weak 

for colorectal cancer (OR, 1.09), and the rates of stem cell division in the tissues giving rise 

to these cancers differ by several orders of magnitude. In neural stem cells, which give rise 

to gliomas, the number of divisions is about 270 million, and for colorectal stem cells it is 

about 1.2 trillion over the average lifetime of an individual.34 The observation that 

genetically increased telomere length was more strongly associated with rarer cancers 

potentially reflects the same mechanism, since rarer cancers also tend to show lower rates of 

stem cell division.34 For example, the incidence of glioma per 100 000 people per year in 

the United States is 0.4, and for colorectal cancer it is 42.4.33

The inverse associations observed for some nonneoplastic diseases may reflect the impact of 

telomere shortening on tissue degeneration and an evolutionary trade-off for greater 

resistance to cancer at the cost of greater susceptibility to degenerative diseases, particularly 

cardiovascular diseases.128,129

Clinical Relevance of Findings

Our findings suggest that potential clinical applications of telomere length, eg, as a tool for 

risk prediction or as an intervention target for disease prevention, may be subject to a trade-

off in risk between cancer and non-neoplastic diseases. For example, a number of companies 

have been established that offer telomere length measurement services to the public (via a 

requesting physician) under the claim that shorter telomeres are a general indicator of poorer 

health status and older biological age and that such information can be used to motivate 

healthy lifestyle choices in individuals. However, the conflicting direction of association 

between telomere length and risk of cancer and non-neoplastic diseases indicated by our 

findings suggests that such services to the general public may be premature.

Study Limitations

Our study is subject to some limitations, in addition to the Mendelian randomization 

assumptions already considered. First, our method assumes that the magnitude of the 

association between SNPs and telomere length is consistent across tissues. Second, our 

study assumed a linear shape of association between telomere length and disease risk, 

whereas the shape could be “J” or “U” shaped.104,117,125 Third, our results assume that 

the samples used to define the genetic instrument for telomere length18 and the various 

samples used to estimate the SNP-disease associations are representative of the same general 

population, practically defined as being of similar ethnicity, age, and sex distribution.130 

This assumption would, for example, not apply in the case of the SNP-disease associations 

derived from East Asian or pediatric populations. Generally speaking, violation of these 

assumptions could bias the magnitude of the association between genetically increased 

telomere length and disease but would probably not increase the likelihood of false positives 

(ie, incorrectly inferring an association when none exists).131 Our results should therefore 

remain informative for the direction and broad magnitude of the average association at the 

population level, even in the presence of such violations. Fourth, we cannot rule out chance 

in explaining some of the weaker findings. Fifth, our results may not be fully representative 

of noncommunicable diseases (since not all studies shared data, and our analyses were 

Page 8

JAMA Oncol. Author manuscript; available in PMC 2017 October 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



underpowered for the secondary disease outcomes). The diseases represented in our primary 

analyses probably account for more than 60% of all causes of death in American adults.132

Conclusions

It is likely that longer telomeres increase risk for several cancers but reduce risk for some 

non-neoplastic diseases, including cardiovascular diseases. Further research is required to 

resolve whether telomere length is a useful predictor of risk that can help guide therapeutic 

interventions, to clarify the shape of any dose-response relationships, and to characterize the 

nature of the association in population subgroups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

Question

What is the causal relevance of telomere length for risk of cancer and non-neoplastic 

diseases?

Findings

In this Mendelian randomization study, genetically longer telomeres were associated with 

higher odds of disease for 9 of 22 primary cancers tested but with reduced odds of 

disease for 6 of 32 primary non-neoplastic diseases, including cardiovascular diseases.

Meaning

It is likely that longer telomeres increase risk for several cancers but reduce risk for some 

non-neoplastic diseases, including cardiovascular diseases. This trade-off in risk should 

be carefully considered in any diagnostic, prognostic, or therapeutic applications based 

on telomere length.
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Figure 1. The Association Between Genetically Increased Telomere Length and Odds of Primary 
Noncommunicable Diseases
COPD indicates chronic obstructive pulmonary disease; ER, estrogen receptor; LMP, low 

malignancy potential; NA, not applicable; SNP, single-nucleotide polymorphism.
a P value for association between genetically increased telomere length and disease from 

maximum likelihood.
b P value for heterogeneity among SNPs within the instrument.
c The effect estimate for heart failure is a hazard ratio (all others are odds ratios).
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Figure 2. Comparison of the Present Mendelian Randomization (MR) Study and Prospective 
Observational Studies of the Association Between Telomere Length and Disease
Search strategy and characteristics for observational studies are described in eTables 3 and 4 

in Supplement 1.
a From fixed-effects meta-analysis of independent observational studies described in eTable 

3 in Supplement 1.
b From the combination of Copenhagen City Heart Study (CCHS) and Copenhagen General 

Population Study (CGPS).10
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c From the combination of Prostate, Lung, Colorectal, and Ovarian (PLCO), Alpha-

Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC), and Shanghai Women's 

Health Study (SWHS).97
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Figure 3. The Association Between Genetically Increased Telomere Length and Odds of Cancer 
as a Function of Selected Characteristics
A-D, The plotted data show how the strength of the relationship between genetically 

increased telomere length and cancer varies by the selected characteristic: the R2 statistic 

indicates how much of the variation between cancers can be explained by the selected 

characteristic; P values are from meta-regression models; circle sizes are proportional to the 

inverse of the variance of the log OR. A, Data for average lifetime number of stem cell 

divisions were downloaded from Tomasetti and Vogelstein.34 B-D, Data for percentage 

survival 5 years after diagnosis, cancer incidence and median age at diagnosis were 

downloaded from the Surveillance, Epidemiology, and End Results Program.33 Not all 
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cancers had information available for the selected characteristics (hence the number of 

cancers varies across the subplots). Information was available for 9 cancers for tissue-

specific rates of stem cell division, 13 cancers for percentage surviving 5 years after 

diagnosis, 17 cancers for cancer incidence, and 13 cancers for median age at diagnosis. OR 

indicates odds ratio; SD, standard deviation.
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Table 2
Study Characteristics for Primary Noncommunicable Diseases

Disease Cases, No. Controls, No. SNPs, No. Statistical Power Population Source

Cancer

Bladder cancer    1601    1819 10 0.62 EUR NBCS38

Breast cancer 48 155 43 612 13 1.00 EUR BCAC17,39

    Estrogen receptor negative    7465 42 175 13 1.00 EUR BCAC17,39

    Estrogen receptor positive 27 074 41 749 13 1.00 EUR BCAC17,39

Colorectal cancer 14 537 16 922   9 1.00 EUR CORECT/GECCO40,41

Endometrial cancer    6608 37 925 12 1.00 EUR ECAC42,43

Esophageal squamous cell 
carcinoma

   1942    2111 11 0.64 EA Abnet et al44

Glioma    1130    6300 12 0.72 EUR Wrensch et al45 and Walsh et 
al46

Head and neck cancer    2082    3477 12 1.00 EUR McKay et al47

Kidney cancer    2461    5081 12 0.99 EUR KIDRISK48

Lung cancer 11 348 15 861 13 1.00 EUR ILCCO49

    Adenocarcinoma    3442 14 894 13 1.00 EUR ILCCO49

    Squamous cell carcinoma    3275 15 038 13 1.00 EUR ILCCO49

Skin cancer

    Melanoma 12 814 23 203 13 1.00 EUR MC50

    Basal cell carcinoma    3361 11 518 13 1.00 EUR NHS/HPFS51

Neuroblastoma    2101    4202 12 0.87 EUR Diskin52

Ovarian cancer 15 397 30 816 13 1.00 EUR OCAC17,53

    Clear cell    1016 30 816 13 0.76 EUR OCAC17,53

    Endometrioid    2154 30 816 13 0.98 EUR OCAC17,53

    Mucinous    1643 30 816 13 0.94 EUR OCAC17,53

    Serous invasive    9608 30 816 13 1.00 EUR OCAC17,53

    Serous low malignant potential      972 30 816 13 0.73 EUR OCAC17,53

Pancreatic cancer    5105    8739 12 1.00 EUR PanScan (incl. EPIC)54

Prostate cancer 22 297 22 323 11 1.00 EUR PRACTICAL55,56

Testicular germ-cell cancer      986    4946 11 0.52 EUR Turnbull et al57 and Rapley 
et al58

Autoimmune/Inflammatory Diseases

Alopecia areata    2332    5233   7 0.60 EUR Betz59

Atopic dermatitis 10 788 30 047 13 1.00 EUR EAGLE60

Celiac disease    4533 10 750   3 0.82 EUR Dubois61

Inflammatory bowel disease

    Crohn disease    5956 14 927 11 1.00 EUR IIBDGC62

    Ulcerative colitis    6968 20 464 12 1.00 EUR IIBDGC62

Juvenile idiopathic arthritis    1866 14 786 11 0.87 EUR Thompson et al63a
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Disease Cases, No. Controls, No. SNPs, No. Statistical Power Population Source

Multiple sclerosis 14 498 24 091   3 1.00 EUR IMSGC64

Aggressive periodontitis      888    6789 13 0.63 EUR Schaefer et al65

Rheumatoid arthritis    5538 20 163 11 1.00 EUR Stahl et al66

Cardiovascular Diseases

Abdominal aortic aneurysm    4972 99 858 13 1.00 EUR AC67–72

Coronary heart disease 22 233 64 762 13 1.00 EUR CARDIoGRAM73

Heart failure    2526 20 926 13 0.99 EUR CHARGE-HF74

Hemorrhagic stroke    2963    5503 12 0.96 EUR METASTROKE/ISGC75

Ischemic stroke 12 389 62 004 13 1.00 EUR METASTROKE/ISGC76,77

    Large-vessel disease    2167 62 004 13 0.99 EUR METASTROKE/ISGC76,77

    Small-vessel disease    1894 62 004 13 0.97 EUR METASTROKE/ISGC76

    Cardioembolic disease    2365 62 004 13 0.99 EUR METASTROKE/ISGC76

Sudden cardiac arrest    3954 21 200 13 1.00 EUR Unpublished

Diabetes

Type 1    7514    9045   6 0.95 EUR T1DBase78,79

Type 2 10 415 53 655 11 1.00 EUR DIAGRAM80

Eye Disease

Age-related macular degeneration    7473 51 177 13 1.00 EUR AMD Gene81

Retinopathy    1122 18 289 12 0.75 EUR Jensen et al82

Lung Disease

Asthma 13 034 20 638   4 1.00 EUR GABRIEL/Ferreira et al83,84

Chronic obstructive pulmonary 
disease

   2812    2534 12 0.85 EUR COPDGene85

Interstitial lung disease    1616    4683   9 0.60 EUR Fingerlin86

Neurological/Psychiatric Disease

Amyotrophic lateral sclerosis    6100    7125 12 1.00 EUR SLAGEN/ALSGEN87

Alzheimer disease 17 008 37 154 12 1.00 EUR IGAP88

Anorexia nervosa    2907 14 860   9 0.93 EUR GCAN89

Autism    4949    5314   7 0.82 EUR PGC90

Bipolar disorder    7481    9250   9 1.00 EUR PGC91

Major depressive disorder    9240    9519   8 0.99 EUR PGC92

Schizophrenia 35 476 46 839 12 1.00 EUR PGC93

Tourette syndrome    1177    4955 13 0.74 EUR TICG/TSAICG94

Other

Chronic kidney disease    5807 56 430 13 1.00 EUR CKDGen95

Endometriosis    4604    9393 11 1.00 Mix Nyholt et al96

Abbreviations: EA, East Asian; EUR, European; SNP, single-nucleotide polymorphism.
Study acronyms: AC, the Aneurysm Consortium; ALSGEN, the International Consortium on Amyotrophic Lateral Sclerosis Genetics; AMD Gene, 
Age-related Macular Degeneration Gene Consortium; BCAC, Breast Cancer Association Consortium; CARDIoGRAM, Coronary ARtery DIsease 
Genome wide Replication and Meta-analysis; CHARGE-HF, Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium – Heart 
Failure Working Group; COPDGene, The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease; CKDGen, Chronic Kidney Disease 
Genetics consortium; CORECT, ColoRectal Transdisciplinary Study; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; EAGLE, 
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EArly Genetics & Lifecourse Epidemiology Eczema Consortium (excluding 23andMe); ECAC, Endometrial Cancer Association Consortium; 
EPIC, European Prospective Investigation into Cancer and Nutrition study; GABRIEL, Multidisciplinary Study to Identify the Genetic and 
Environmental Causes of Asthma in the European Community; GCAN, Genetic Consortium for Anorexia Nervosa; GECCO, Genetics and 
Epidemiology of Colorectal Cancer Consortium; IGAP, International Genomics of Alzheimer Project; HPFS, Health Professionals Follow-Up 
Study; ILCCO, International Lung Cancer Consortium; IMSGC, International Multiple Sclerosis Genetic Consortium; IIBDGC, International 
Inflammatory Bowel Disease Genetics Consortium; KIDRISK, Kidney cancer consortium; MC, the melanoma meta-analysis consortium; 
METASTROKE/ISGC, METASTROKE project of the International Stroke Genetics Consortium; NBCS, Nijmegen Bladder Cancer Study; NHS, 
Nurses' Health Study; OCAC, Ovarian Cancer Association Consortium; PanScan, Pancreatic Cancer Cohort Consortium; PGC, Psychiatric 
Genomics Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome; SLAGEN, 
Italian Consortium for the Genetics of Ayotrophic Lateral Sclerosis; TIDBase, type 1 diabetes database; TICG (Tourette International 
Collaborative-Genetics); TSAICG (Tourette Syndrome Association International Consortium for Genetics).

a
Plus previously unpublished data.

JAMA Oncol. Author manuscript; available in PMC 2017 October 12.


	Abstract
	Methods
	Study Design
	Comparison With Prospective Observational Studies
	Statistical Analysis

	Results
	Discussion
	Comparison With Previous Studies
	Mechanisms of Association
	Clinical Relevance of Findings
	Study Limitations

	Conclusions
	The Telomeres Mendelian Randomization Collaboration
	Affiliations of The Telomeres Mendelian Randomization Collaboration
	Additional Information
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

