
Original Investigation | Imaging

Association of Peritumoral Radiomics With Tumor Biology
and Pathologic Response to Preoperative Targeted Therapy
for HER2 (ERBB2)–Positive Breast Cancer
Nathaniel Braman, BEng; Prateek Prasanna, PhD; Jon Whitney, PhD; Salendra Singh, MS; Niha Beig, MS; Maryam Etesami, MD; David D. B. Bates, MD;
Katherine Gallagher, MD; B. Nicolas Bloch, MD; Manasa Vulchi, MD; Paulette Turk, MD; Kaustav Bera, MBBS; Jame Abraham, MD; William M. Sikov, MD; George Somlo, MD;
Lyndsay N. Harris, MD; Hannah Gilmore, MD; Donna Plecha, MD; Vinay Varadan, PhD; Anant Madabhushi, PhD

Abstract

IMPORTANCE There has been significant recent interest in understanding the utility of quantitative
imaging to delineate breast cancer intrinsic biological factors and therapeutic response. No clinically
accepted biomarkers are as yet available for estimation of response to human epidermal growth
factor receptor 2 (currently known as ERBB2, but referred to as HER2 in this study)–targeted therapy
in breast cancer.

OBJECTIVE To determine whether imaging signatures on clinical breast magnetic resonance
imaging (MRI) could noninvasively characterize HER2-positive tumor biological factors and estimate
response to HER2-targeted neoadjuvant therapy.

DESIGN, SETTING, AND PARTICIPANTS In a retrospective diagnostic study encompassing 209
patients with breast cancer, textural imaging features extracted within the tumor and annular
peritumoral tissue regions on MRI were examined as a means to identify increasingly granular breast
cancer subgroups relevant to therapeutic approach and response. First, among a cohort of 117
patients who received an MRI prior to neoadjuvant chemotherapy (NAC) at a single institution from
April 27, 2012, through September 4, 2015, imaging features that distinguished HER2+ tumors from
other receptor subtypes were identified. Next, among a cohort of 42 patients with HER2+ breast
cancers with available MRI and RNaseq data accumulated from a multicenter, preoperative clinical
trial (BrUOG 211B), a signature of the response-associated HER2-enriched (HER2-E) molecular
subtype within HER2+ tumors (n = 42) was identified. The association of this signature with
pathologic complete response was explored in 2 patient cohorts from different institutions, where all
patients received HER2-targeted NAC (n = 28, n = 50). Finally, the association between significant
peritumoral features and lymphocyte distribution was explored in patients within the BrUOG 211B
trial who had corresponding biopsy hematoxylin-eosin–stained slide images. Data analysis was
conducted from January 15, 2017, to February 14, 2019.

MAIN OUTCOMES AND MEASURES Evaluation of imaging signatures by the area under the
receiver operating characteristic curve (AUC) in identifying HER2+ molecular subtypes and
distinguishing pathologic complete response (ypT0/is) to NAC with HER2-targeting.

RESULTS In the 209 patients included (mean [SD] age, 51.1 [11.7] years), features from the
peritumoral regions better discriminated HER2-E tumors (maximum AUC, 0.85; 95% CI, 0.79-0.90;
9-12 mm from the tumor) compared with intratumoral features (AUC, 0.76; 95% CI, 0.69-0.84). A
classifier combining peritumoral and intratumoral features identified the HER2-E subtype (AUC,
0.89; 95% CI, 0.84-0.93) and was significantly associated with response to HER2-targeted therapy
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Abstract (continued)

in both validation cohorts (AUC, 0.80; 95% CI, 0.61-0.98 and AUC, 0.69; 95% CI, 0.53-0.84).
Features from the 0- to 3-mm peritumoral region were significantly associated with the density of
tumor-infiltrating lymphocytes (R2 = 0.57; 95% CI, 0.39-0.75; P = .002).

CONCLUSIONS AND RELEVANCE A combination of peritumoral and intratumoral characteristics
appears to identify intrinsic molecular subtypes of HER2+ breast cancers from imaging, offering
insights into immune response within the peritumoral environment and suggesting potential benefit
for treatment guidance.

JAMA Network Open. 2019;2(4):e192561. doi:10.1001/jamanetworkopen.2019.2561

Introduction

Human epidermal growth factor receptor 2 (currently known as ERBB2, but referred to as HER2 in
this study)–positive breast cancer is morphologically and genetically heterogeneous. Not all patients
will fully benefit from HER2-targeted treatment, with less than 35% of patients initially responding
to therapy with the monoclonal antibody trastuzumab.1,2 Molecular profiling via tests such as the
PAM50 gene set can provide insight into treatment response by subcategorizing HER2-positive
(HER2+) tumors into response-associated intrinsic molecular subtypes.3-8 The HER2-enriched
(HER2-E) subtype, composing 40% to 50% of HER2+ breast cancers, is of particular therapeutic
interest owing to its elevated rate of response to HER2-targeted therapy.3,9,10 Although molecular
subtyping of HER2+ breast cancer is gradually gaining biological significance, no clinically accepted
biomarkers are as yet available for prediction of response to anti-HER2 therapy.11 Therefore, there
remains a need to develop novel approaches to estimate clinical outcomes of HER2-
targeted therapy.

In breast cancer, computerized tissue phenotyping on radiographic imaging (or radiomic)
features extracted from breast magnetic resonance imaging (MRI) has been shown to be sensitive to
many facets of cancer biological factors, such as clinical receptor status,12-20 genotypic molecular
subtype,21-23 and gene mutation or molecular pathway activation.24-29 Although some recent
approaches have explored direct radiomic estimation of response from pretreatment30,31 and
interim MRI,19,32,33 these approaches often lack well-understood associations with underlying tumor
biological factors. While a number of other investigations involving breast radiogenomics (ie,
integrating radiomic and genomic data for multiscale tumor characterization) have interrogated
biological associations with imaging,12-28 relatively little of this work25,27 has also placed such findings
in the context of clinical outcomes. Thus, the association of radiogenomic signatures with response
to targeted therapies remains largely unknown. Similarly, almost all radiogenomic approaches have
focused on molecular and genomic correlations with imaging features and not explicitly considered
the association of radiomic features with histopathologic attributes. A radiogenomic approach to
response assessment, leveraging radiomic signatures of response-associated molecular subtypes
with a known morphologic basis, could inform therapeutic approach while still providing biological
interpretability.

A growing body of research implicates the tumor microenvironment as a key player in breast
cancer development and progression.34 Physical and genetic changes within the stroma surrounding
a tumor help dictate its ability to grow and spread, evade the body’s immune defenses, and resist
therapeutic intervention. Empirical evidence suggests35 that the microenvironment might harbor
information that enables estimation of treatment response. For instance, an elevated concentration
of tumor-infiltrating lymphocytes within the stroma is associated with improved therapeutic
outcome in HER2+ breast cancer,36 and differing immunogenicity between HER2+ molecular
subtypes of breast cancer has been shown to contribute to their varying treatment outcomes.4,37,38

The case for considering the tumor microenvironment is especially strong in the stratification of
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HER2+ by molecular subtype and outcome, as it has recently been shown that HER2-E and
non–HER2-E differ in their interactions with the tumor microenvironment that potentially contribute
to therapeutic resistance.39

Despite the biological significance of the tumor microenvironment, most breast radiomics
approaches have focused on interrogating heterogeneity patterns across the entire tumor40 or
within intratumoral subregions on breast MRI.41 Others have reported success of such approaches
within the bulk parenchyma on dynamic contrast enhanced (DCE)–MRI13,22,23,42-45 and other
modalities,43 indicating the presence of discriminating radiomic information outside of the lesion. In
addition, architectural disorder of the surrounding tumor-associated vessel network was recently
shown to be associated with treatment response on pretreatment DCE-MRI.46 Comparatively few
studies,23,25,30,47 however, have explored textural measures of heterogeneity within the tumor
environment in immediate proximity to the tumor on breast DCE-MRI. This region has been shown
to qualitatively differ in appearance on DCE-MRI across intrinsic molecular subtypes of breast
cancer15 and, thus, radiomic analysis of this region may contribute value to the identification of the
HER2-E subtype. In previous work, supplementing analysis of the tumor with peritumoral radiomics—
textural measurements within the tissue surrounding the tumor—enabled the estimation of
treatment response on pretreatment DCE-MRI.30 One hypothesis for the estimative capability of
peritumoral radiomics is that these features might detect the magnitude of pretreatment immune
response and spatial architecture of lymphocytes within the tumor environment.30

In this study, we evaluated response-associated subtypes of HER2+ breast cancer by
interrogating the tumor and peritumoral environment on imaging. We then examined a possible
association between radiogenomic signature of HER2-E and response to HER2-targeted neoadjuvant
chemotherapy (NAC) in 2 independent validation cohorts. We also explored the underlying biological
basis of this distinctive radiomic signature through a quantitative comparison with pathologic
immune response. Our approach represents several possible contributions to the area of breast
radiogenomics: (1) radiogenomic subtyping of HER2+ breast cancer using both intratumoral and
peritumoral textural patterns, (2) applying radiogenomic subtyping to the assessment of response to
a specific targeted therapy, and (3) substantiating radiogenomic signatures through morphologic
association with corresponding biopsy samples.

Methods

Data Sets and Experiments
The flowchart in Figure 1 depicts an overview of the data sets used in this study and the various
experiments performed. Clinical and scan information for each cohort is either described in a
previous publication30 or included in Table 1. The analysis included 209 patients (mean [SD] age, 51.1
[11.7] years). This Health Insurance Portability and Accountability Act of 1996 regulations–compliant
study was approved by the institutional review board at the University Hospitals Cleveland Medical
Center, Cleveland, Ohio, and the need for informed consent was waived; a correlative study was also
conducted after review and approval by the University Hospitals Cleveland Medical Center
Institutional Review Board. This study followed the Standards for Reporting of Diagnostic Accuracy
(STARD) reporting guideline. The study was conducted from April 27, 2012, through September 4, 2015,
and data analysis was performed from January 15, 2017, to February 14, 2019.

Distinguishing Receptor Subtypes
A previously described cohort of 117 patients30 who received neoadjuvant treatment at University
Hospitals Cleveland Medical Center was used to first assess the ability of peritumoral radiomics to
differentiate HER2+ from breast cancers of other receptor statuses. This cohort contained 28 HER2+
and 89 HER2-negative (HER2−) breast cancers (70 hormone receptor–positive [HR+], and 19 triple
negative [TN]) receptor status. Several signatures were developed and evaluated in cross-validation
within this data set to distinguish HER2+ from (1) HR+, HER2−; (2) TN; and (3) all HER2− tumors.
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Molecular Subtyping of HER2+
A retrospective, multi-institutional data set of 42 patients with HER2+ breast cancer with pre-NAC
DCE-MRI scan findings (eMethods in the Supplement) and gene expression data available formed the
molecular subtype discovery cohort. Data on 35 patients were obtained from the BrUOG 211B
multicenter, preoperative clinical trial48 accrued between June 5, 2008, and August 13, 2012, at
Brown University Oncology Research Group participating hospitals, Providence, Rhode Island, Yale
Cancer Center, New Haven, Connecticut, and City of Hope Comprehensive Cancer Center, Duarte,
California, with written informed consent. Seven patients from the Cancer Genome Atlas–Breast
Cancer (TCGA-BRCA) project with imaging results available through the Cancer Imaging Archive
(TCIA)49,50 were also included. The patient selection flowchart for this cohort is included in eFigure 1
in the Supplement and the distribution of clinical variables in the discovery cohort is compared with
the original study populations in eTable 1 in the Supplement.

HER2 positivity was confirmed by either overexpression by immunohistochemistry stain (3+) or
a fluorescent in situ hybridization ratio for HER/CEP17 greater than 2.0. Intrinsic subtyping was
described in greater detail previously.4 Briefly, unsupervised clustering of PAM50 gene expression
values, quantified by microarray or targeted RNASeq of biopsy samples, was performed, and clusters
were assigned to luminal, basal, and HER2-E subgroups based on estrogen receptor (ER) and/or
progesterone receptor (PR) IHC values and relative expression of the proliferation-associated genes
within the PAM50 gene list.4,51 Nineteen patients were assigned the HER2-E subtype, whereas the
remaining 23 were assigned non–HER2-E subtypes (19 HER2-luminal, 4 HER2-basal). Imaging
signatures capable of distinguishing HER2-E from HER2+ were developed and evaluated in this
cohort via cross-validation.

Association With HER2-Targeted Therapy Response
We further evaluated our HER2-E signature by assessing its association with pathologic complete
response (pCR) to HER2-targeted NAC in 2 retrospective pathologic response cohorts. The first
cohort was pathologic response cohort 1 (PRC1). The 28 HER2+ University Hospitals patients
described previously30 were additionally used for initial evaluation of response association. Sixteen

Figure 1. Experimental Design

19 TN 70 HR+, HER2– 28 HER2+

117 HER2+ vs HER2–

47 HER2+ vs TN

98 HER2+ vs HR+, HER2–

Experiment 1

Receptor status cohort

19 HER2–E 23 Non-HER2–E

Discovery cohort

HER2–E vs Non-HER2–E

Experiment 2

pCR prediction in PRC1 with
HER2–E signature

pCR prediction in PRC2 with
HER2–E signature

Experiment 3

Association of radiomic signatures of HER2–E
lymphocyte density and distribution on biopsy

Experiment 4
12 HER2–E 15 Non-HER2–E

Discovery cohort patients with
available biopsy images

16 pCR 12 Non-pCR

Pathologic response cohort PRC1

26 pCR 24 Non-pCR

Pathologic response cohort PRC2

eFigure 2 in the Supplement depicts the process of developing imaging signatures
associated with receptor status (experiment 1) and HER2+ molecular subtype
(experiment 2). HER2-E indicates HER2-enriched; HR, hormone receptor; pCR,

pathologic complete response; PRC1, pathologic response cohort 1; PRC2, pathologic
response cohort 2; and TN, triple negative.
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achieved pCR on surgical specimen (ypT0/is), and 12 retained the presence of residual disease
following NAC (non-pCR). Twenty-three patients in PRC1 received a combination of docetaxel,
carboplatin, trastuzumab, and pertuzumab (DCTP) and 5 received only docetaxel, carboplatin, and
trastuzumab (DCT). The second cohort was pathologic response cohort 2 (PRC2). Fifty HER2+
patients (26 pCR, 24 non-pCR by ypT0/is) who received DCE-MRI scans before HER2-targeted NAC
at the Cleveland Clinic were used to further validate the association of the radiogenomic signature of
HER2-E with response. All patients in PRC2 were scanned using 1.5-T Siemens scanners and
received DCTP.

Association With Lymphocyte Distribution
Twenty-seven patients from the BrUOG 211B trial molecular subtyping cohort had hematoxylin-
eosin–stained slides and slide images of pretreatment biopsy samples also available. A post hoc
radiology-pathology correlation experiment was performed to assess associations between radiomic

Table 1. Clinical Information for the BrUOG 211B/TCIA Molecular Subtype Discovery Cohort and PRC1 and PRC2

Variable

Discovery PRC1 PRC2

P ValueHER2-E Non–HER2-E pCR Non-pCR pCR Non-pCR
No. of patients 19 23 16 12 26 24

Age, mean (SD), ya 50.9 (7.7) 51.7 (9.8) 47.9 (13.4) 47.4 (11.7) 49.7 (11.2) 50.7 (13.7) .41

Receptor status, No.

ER+ 4 21 8 8 13 22 .43b

PR+ 2 17 7 8 9 16 .78b

Stage, No.

I 1 3 1 3 3 2

.55b

II 12 12 9 7 16 18

III 5 8 6 1 7 4

IV 0 0 0 1 0 0

NA 1 0 0 0 0 0

Scanner strength, No.

1.5 T 18 19 14 9 26 24 NA

3 T 1 4 2 3 0 0 NA

Scanner make/model, No.c

Scanner 1 0 2 8 6 9 4 NA

Scanner 2 1 4 5 2 17 18 NA

Scanner 3 10 8 0 1 0 2 NA

Scanner 4 8 5 2 2 0 0 NA

Scanner 5 0 4 1 1 0 0 NA

Treatment regimen, No.

DCT NA NA 2 3 0 0 NA

DCTP NA NA 14 9 26 24 NA

Surgical intervention, No.

Breast-conserving surgery NA NA 5 6 11 6 NA

Mastectomy NA NA 11 6 15 18 NA

Biopsy sample available, No. 12 15 NA NA NA NA NA

Contained peripheral tissue 5 8 NA NA NA NA NA

Abbreviations: DCT, docetaxel, carboplatin, and trastuzumab; DCTP, docetaxel,
carboplatin, trastuzumab, and pertuzumab; ER+, estrogen receptor–positive; HER2-E,
HER2-enriched; NA, not applicable; pCR, pathologic complete response; PRC1,
pathologic response cohort 1; PRC2, pathologic response cohort 2; PR+, progesterone
receptor–positive.
a No significant difference in mean of PRC1 and PRC2 compared with the discovery

cohort by unpaired, 2-sided t test.
b No significant difference in categorical distribution of PRC1 and PRC2 compared with

the discovery cohort by Pearson χ2 test.

c Scanner models differ between cohorts and are listed within the same rows for
simplicity. Discovery cohort: scanner 1, Siemens Avanto; scanner 2, Siemens Verio;
scanner 3, Siemens Symphony or SymphonyTim; scanner 4, General Electric (GE)
Medical Systems Signa Excite; scanner 5, GE Medical Systems Signa Hdx or Hdxt. PRC1:
scanner 1, Siemens Avanto; scanner 2, Siemens Espree; scanner 3, Siemens Verio;
scanner 4, Philips Medical Systems Ingenuity; scanner 5, Philips Medical Systems Intera.
PRC2: scanner 1, Siemens Avanto; scanner 2, Siemens Espree; scanner 3, Siemens Aera.
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signatures within the peritumoral tissue and pretreatment immune response as measured by tumor-
infiltrating lymphocyte (TIL) density. For the subset of biopsy samples containing sufficient
peripheral nontumor tissue for analysis (n = 13), additional correlative analysis was performed with
peritumoral lymphocytic density.

Lesion Segmentation and Feature Extraction
Images were scaled within a standardized intensity range based on maximum and minimum intensity
values. Multiple readers (M.E., D.D.B.B., K.G., B.N.B., P.T., K.B., and D.P.) provided annotations on 3
adjacent slices of DCE-MRI scans working in partial consensus, which were then used to derive 5
annular rings of 3 mm each (excluding skin, air, or pectoralis muscle) out to a maximum distance of 15
mm, consistent with previous studies analyzing the tumor environment.25,52,53 Ninety-nine texture
descriptors were extracted from each region, composing the following 4 feature groups (eMethods
and eFigure 2 in the Supplement provide further details): (1) 25 Laws descriptors,54 capturing
combinations of 5 irregular enhancement patterns, such as level, edges, spots, waves, or ripples; (2)
48 Gabor descriptors,55 capturing wavelike patterns of intensity variations across 6 different spatial
scales (2, 4, 8, 16, 32, and 64 pixels [px]) at 8 directional orientations (0°, 22.5°, 45°, 67.5°, 90°, 112.5°,
135°, 157.5°); (3) 13 gray level co-occurrence matrix (GLCM) descriptors,56 capturing the
heterogeneity of adjacent intensity values within local pixel neighborhoods; and (4) 13 co-occurrence
of local anisotropy gradients (CoLlAGe) descriptors,57 capturing structural disorder by applying GLCM
heterogeneity metrics to directional intensity patterns.

First-order statistics (mean, median, SD, skewness, kurtosis) for each descriptor were
computed within the tumor and each peritumoral annulus, yielding 495 statistical features per
region. Features were normalized based on mean and SD within the training cohort.

Feature Selection
Feature selection was performed within each region and across all regions. Owing to the high
dimensionality of our feature pool, highly correlated features from each class were removed before
feature selection. Groups of correlated features (Pearson linear correlation coefficient �0.6) were
identified and all but the single most significant feature determined by unpaired, 2-sided t test were
eliminated. For the 4 classes of descriptors, a total of 6 to 9 (Laws), 8 to 11 (GLCM), 55 to 65 (Gabor),
and 10 to 15 (COLlAGe) features within individual regions and 29 (Laws), 41 (GLCM), 207 (Gabor), and
70 (COLlAGe) features across all regions combined remained. Imaging signatures were limited to 5
features to reduce the risk of overfitting, and the top features were identified as those most
frequently selected across 500 iterations of feature selection within the pool of uncorrelated
features in a 3-fold, cross-validation setting. Features were selected one at a time by Bhattacharyya
distance,58,59 weighted by correlation with previously selected features to further reduce
redundancy and overfitting. Feature extraction and selection pipeline are depicted in eFigure 2 in the
Supplement.

Statistical Analysis
A diagonal linear discriminant analysis classifier60 incorporating each set of top features was trained
and assessed through 100 iterations of 3-fold cross-validation within training cohorts. A final HER2-E
classifier was trained and locked down using the entire discovery cohort, then evaluated for
association with response in the retrospective validation data sets (PRC1, PRC2). Significance of the
area under the curve (AUC) was determined via permutation testing with random sampling61,62

(eMethods in the Supplement). The significance of AUC improvement when incorporating both
intratumoral and peritumoral features was assessed by paired, 1-sided Delong test for correlated area
under the receiver operating characteristic (ROC) curves.63 Operating points on the ROC curve for
calculation of sensitivity and specificity were chosen according to the Youden Index.64

A previously developed automated nuclei and lymphocyte detection model65 was adapted to
detect lymphocytes on hematoxylin-eosin–stained slides of pretreatment biopsy samples for
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patients from the BrUOG 211B trial (model training and validation described in eMethods in the
Supplement). Pathologic immune response was quantified as the number of lymphocytes per unit
area separately within and beyond pathologist-annotated tumor boundaries. Multivariable linear
regression models of lymphocytic density within the tumor and surrounding tissue were developed
from the top 5 features for each imaging region. Significance of the R2 statistic was determined by F
test of error variance with Benjamini-Hochberg multiple comparison correction.66,67

Results

Distinguishing Receptor Status
To first establish a basis for peritumoral radiomics in the context of characterizing HER2+ biological
features, we investigated their capability to distinguish HER2+ breast cancer from other clinical
receptor status groups. The addition of peritumoral radiomic features improved the ability to
distinguish HER2+ vs HR+ (AUC, 0.71; 95% CI, 0.67-0.75; P < .001; n = 98), TN (AUC, 0.80; 95% CI,
0.76-0.84; P < .001; n = 47), and all other subtypes (AUC, 0.65; 0.59-0.71; P = .006) compared with
intratumoral features alone. The AUC and top feature sets for all comparisons with and without
peritumoral features are listed in Table 2.

Molecular Subtyping of HER2+
A signature of intratumoral features stratified the response-associated HER2-E subtype from other
nonenriched HER2+ tumors with a mean AUC of 0.76 (95% CI, 0.69-0.84). Within all individual
regions beyond the tumor examined, peritumoral features outperformed intratumoral features
(maximum cross-validated AUC, 0.85; 95% CI, 0.79-0.90, within the 9- to 12-mm region). Within and
near the tumor, Gabor features were most frequently selected. With greater peritumoral radius,
CoLlAGe features quantifying the elevated disorder of local intensity gradient orientations in HER2-E
became more predominant (Figure 2A), such as in the 6- to 9-mm region where CoLlAGe comprised
all but 1 top feature (eTable 2 in the Supplement). Full feature sets and AUCs for each peritumoral
region are included in eTable 2 in the Supplement. Nonparametric feature elimination methods were
also assessed and found to select overlapping feature sets and yield similar performance (AUC, 0.84;
95% CI, 0.80-0.88 with pruning by Spearman correlation and 0.87; 95% CI, 0.81-0.93 with pruning
by elastic net regularization) (eTable 3 in the Supplement).

A combined intratumoral and peritumoral feature set identified across features from the
intratumoral and all peritumoral regions (Table 2) best stratified HER2+ molecular subtypes. This
feature set included 3 intratumoral, filter-based features (2 Gabor and 1 Laws) and 2 peritumoral
CoLlAGe texture entropy features from the 6- to 9-mm and 9- to 12-mm regions. HER2-E was
identified with cross-validated AUC (0.89; 95% CI, 0.84-0.93), which was a significant improvement
(P = .04) over intratumoral features only. Mean classification performance between models with and
without peritumoral models were further compared via risk stratification (eTable 4 in the
Supplement). Output of the combined intratumoral and peritumoral model was found to offer
significant independent value (P = .007) when combined in a multivariate setting with clinical
variables, such as age, ER status, PR status, and stage (eTable 5 in the Supplement).

Association With HER2-Targeted Therapy Response
In 2 pathologic response cohorts, our HER2-E radiomic signature was found to be associated with
pCR to preoperative anti-HER2 therapy, consistent with the molecular subtype elevated rate of
response in this context.4 In PRC1, the combined peritumoral and intratumoral feature set produced
the only classifier significantly associated (P = .003) with response on pretreatment imaging,
yielding an AUC of 0.80 (95% CI, 0.61-0.98), with accuracy of 79%, sensitivity of 94%, and
specificity of 58% at the operating point. This model was again found to offer independent value in a
multivariate comparison with clinical variables, this time in the context of pCR estimation in PRC1
(eTable 6 in the Supplement). Meanwhile, intratumoral features alone failed to significantly
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Table 2. Features and Performance for Intratumoral Only and Combined Intratumoral and Peritumoral Region Classifiers in Distinguishing HER2+ From Other
Receptor Subtypes and Stratifying HER2+ by Molecular Subtype

Region

Feature Signature Performance

Group Descriptor Statistic P Value AUC (95% CI) P Value

HER2+ vs HR-Positive, HER2−

Intratumoral

Gabor Width, 6 px; orientation, 67.5° Kurtosis .01

0.69 (0.65-0.73) <.001

GLCM Energy Kurtosis .10

Gabor Width, 8 px; orientation, 67.5° Kurtosis .08

Laws Spot-edge Median .007

CoLlAGe Sum average Skewness .003

Intratumoral and peritumoral

0.71 (0.67-0.75) <.001

Tumor Gabor Width, 16 px; orientation, 67.5° Kurtosis .01

Tumor GLCM Energy Kurtosis .10

9-12 mm Gabor Width, 32 px; orientation, 112.5° Kurtosis .02

Tumor Laws Spot-edge Median .007

Tumor CoLlAGe Sum average Skewness .003

HER2+ vs TN

Intratumoral

0.73 (0.67-0.79) .002

Laws Edge-level Median .05

Gabor Width, 8 px; orientation, 45° Kurtosis .22

Laws Ripple-ripple Kurtosis .06

Gabor Width, 2 px; orientation, 0° Kurtosis .16

GLCM Energy Skewness .12

Intratumoral and peritumoral

0.80 (0.76-0.84) <.001

9-12 mm Gabor Width, 4 px; orientation, 90° SD <.001

Tumor Gabor Width, 8 px; orientation, 45° Kurtosis .22

Tumor Laws Edge-level Median .05

9-12 mm Gabor Width, 4 px; orientation, 67.5° Mean <.001

9-12 mm GLCM Sum variance Kurtosis .49

HER2+ vs All

Intratumoral

Gabor Width, 6 px; orientation,67.5° Kurtosis .01

0.65 (0.59-0.71) 0.006

GLCM Energy Kurtosis .05

Gabor Width, 8 px; orientation, 67.5° Kurtosis .05

Laws Spot-edge Median .02

Gabor Width, 8 px; orientation, 45° Kurtosis .05

Intratumoral and peritumoral

Tumor Gabor Width, 16 px; orientation, 67.5° Kurtosis .01

0.71 (0.63-0.79) <.001

Tumor GLCM Energy Kurtosis .05

6-9 mm Laws Ripple-ripple Kurtosis .05

Tumor Laws Spot-edge Median .02

0-3 mm GLCM Info2 Kurtosis .05

HER2-E vs Non–HER2-E

Intratumoral

Gabor Width, 4 px; orientation, 135° Kurtosis .02

0.76 (0.69-0.84) <.001

Laws Ripple-ripple Kurtosis .02

Gabor Width, 16 px; orientation, 112.5° Kurtosis .05

Gabor Width, 16 px; orientation, 45° Kurtosis .43

CoLlAGe Energy Kurtosis .03

(continued)
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distinguish pCR (AUC, 0.66; 95% CI, 0.43-0.88; P = .08) with poorer classification results (accuracy,
68%; sensitivity, 44%; specificity, 100%), along with individual peritumoral regions (eTable 2 in the
Supplement). Figure 2B depicts representative heatmaps corresponding to top intratumoral (Laws
ripple-ripple) and peritumoral (CoLlAGe inertia) features. As with HER2-E, expression of these
features was elevated in patients who achieve pCR compared with other HER2+ breast cancers.
Breast Imaging Reporting and Data System assessment of background parenchymal enhancement
and fibroglandular tissue volume did not differ significantly between response groups (eTable 7 in
the Supplement).

The combined peritumoral and intratumoral classifier was further evaluated in its ability to
predict response in PRC2. The classifier again significantly distinguished between pCR and non-pCR,
with an AUC of 0.69 (95% CI, 0.53-0.84; P = .02). Accuracy, sensitivity, and specificity were 68%,
62%, and 75%, respectively. ROC curves for the combined feature model within PRC1 and PRC2 are
depicted in eFigure 3 in the Supplement.

Association With Lymphocyte Density
Qualitative associations have been observed between peritumoral texture and TIL presence at the
tumor margins on biopsy and posited elevated immune response as a potential biological
underpinning of predictive radiomic signatures in the surrounding tumor environment.30 The
lymphocyte detection model successfully identified TILs and peripheral lymphocytes on
hematoxylin-eosin–stained biopsy slide images (eFigure 4 in the Supplement). The top 5 features
within the peritumoral region closest to the tumor (0-3 mm) was the only region significantly
associated (eFigure 5A in the Supplement) with TIL density following Benjamini-Hochberg correction
for multiple comparisons (R2 = 0.57; 95% CI, 0.39-0.75; P = .002). The DCE-MRI feature expression
maps for one of these features, Gabor (width, 16 px; orientation, 67.5°), are shown alongside
detected TILs on corresponding biopsy samples and lymphocytes in Figure 3A and B, respectively.
Gabor features computed on hematoxylin-eosin–stained slides (down-sampled to ×1 original
magnification to approximate the radiologic scale) show a spatial association between reduced
expression and dense lymphocyte distribution (Figure 3C)—a pattern mirroring the correlation first
observed between DCE-MRI and histologic characteristics. Peripheral lymphocytic density was
observed to be more strongly correlated with radiomic features the greater the distance from the
tumor (eFigure 5B in the Supplement). However, none of these correlations was significant,
potentially owing to the limited number of biopsy samples with sufficient peripheral tissue for
analysis (n = 13).

Discussion

Although the advent of HER2-targeted therapy has improved prognosis for HER2+ breast cancer,68 a
large percentage of HER2+ tumors will nonetheless fail to achieve optimal preoperative response to

Table 2. Features and Performance for Intratumoral Only and Combined Intratumoral and Peritumoral Region Classifiers in Distinguishing HER2+ From Other
Receptor Subtypes and Stratifying HER2+ by Molecular Subtype (continued)

Region

Feature Signature Performance

Group Descriptor Statistic P Value AUC (95% CI) P Value

Intratumoral and peritumoral

Tumor Laws Ripple-Ripple Kurtosis .02

0.89 (0.84-0.93) <.001

Tumor Gabor Width, 16 px; orientation, 112.5° Kurtosis .05

6-9 mm CoLlAGe Energy Kurtosis .04

Tumor Gabor Width, 4 px; orientation, 135° Kurtosis .02

9-12 mm CoLlAGe Inertia Median .002

Abbreviations: AUC, area under the receiver operating characteristic curve; CoLlAGe,
co-occurrence of local anisotropic gradient orientation features; GLCM, Gray level

co-occurrence matrix features; HER2-E, HER2-enriched; HR, hormone receptor; px,
pixels; TN, triple-negative.
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Figure 2. Peritumoral Signature of HER2-Enriched (HER2-E) Identifies Responders to HER2-Targeted Therapy

Standardized expression of CoLIAGe heterogeneity features within the peritumoral regionA

Radiomic patterns associated with HER2-E also identify responders to HER2-targeted NACB
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A, Co-occurrence of local anisotropy gradients (CoLlAGe) feature expression maps
visualize the elevated disorder of local intensity gradient orientations within the
peritumoral region of HER2-E relative to non–HER2-E breast cancers. B, Imaging
signature of HER2-E is also associated with pathologic complete response (pCR) to anti-
HER2 therapy, with rippled enhancement patterns detected intratumorally by Laws
feature and elevated local peritumoral heterogeneity captured by CoLlAGe features 9 to

12 mm from the tumor characterizing both features. NAC indicates neoadjuvant
chemotherapy. Radiomic feature values are unitless, thus the scale depicts relative
expression values of radiomic features, standardized between 0 and 1.0 based on the
range of their distribution. The blue color at 0 depicts the minimum observed feature
value; the red color at 1.0 depicts the maximum observed feature value.
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a combination of chemotherapy and anti-HER2 therapy.1,2 In this study, the findings suggest that
DCE-MRI peritumoral radiomics may enable noninvasive intrinsic subtyping of HER2+ breast cancer
into response-associated subgroups. Features from all peritumoral regions better individually
identified HER2-E breast cancers than analysis of the tumor itself. A combined peritumoral and
intratumoral signature of HER2-E on pretreatment MRI was found to be significantly associated with
pCR, consistent with the HER2-E subgroup’s superior response to HER2-targeted therapy compared
with other HER2+ breast cancers.4 This association was supported in 2 independent validation
cohorts from different institutions: one with high heterogeneity (PRC1: mixed magnetic strengths
and scanner manufacturers, multiple treatment regimens, variability in voxel size) and the other with
homogeneous treatment and MRI acquisition protocols.

A growing body of work23,25,30,47 suggests that the adjacent peritumoral tissue on MRI can
provide unique insight into breast cancer biological features and outcomes. The HER2+ tumor
environment is an especially attractive target for radiogenomic subtyping, as it contains a wide range
of prognostic factors that vary between its molecular subtypes.34 Our findings provide new insight
into HER2+ tumor biological characteristics and its radiographic phenotype, as the superior
discriminability of peritumoral radiomic features appears to suggest discriminable differences of the
tumor environment between the intrinsic molecular subtypes of HER2+ breast cancer. HER2-E was
best characterized by a combination of local disorder, particularly within the peritumoral
environment, and macroscale homogeneity near the tumor. Elevated expression of CoLlAGe features
capturing chaotic orientation of local intensity gradients within the outer peritumoral regions was an

Figure 3. Molecular Subtype Signatures Within the Peritumoral Region Associated With Lymphocyte Density and Distribution on Biopsy

1.00.90.80.70.60.50.40.30.20.10 1.00.90.80.70.60.50.40.30.20.10

Standardized Gabor expression, 0-3 mm
from tumor

A Lymphocyte distribution on corresponding
biopsy samples

B Gabor features on downsampled
H&E images

C

HER2-E

Non-HER2-E

3 mm

1 mm

1 mm

1 mm

1 mm

A, Kurtosis of Gabor features 0 to 3 mm from the tumor on magnetic resonance imaging,
associated with HER2-enriched (HER2-E) status was additionally associated with B,
lymphocyte density within and 0-3 mm beyond the tumor on corresponding biopsy
samples. Red and blue dots indicate lymphocytes and other nuclei, respectively. Green
lines denote pathologist-annotated tumor boundaries (hematoxylin-eosin; inset original
magnification ×100). C, When hematoxylin-eosin–stained images are down-sampled to
approximate the imaging scale (original magnification ×100), midfrequency Gabor

features computed on example hematoxylin-eosin images at that magnification possess
spatial association with lymphocyte density. Radiomic feature values are unitless, thus
the scale depicts relative expression values of radiomic features, standardized between
0 and 1.0 based on the range of their distribution. The blue color at 0 depicts the
minimum observed feature value; the red color at 1.0 depicts the maximum observed
feature value.
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important component of the HER2-E radiomic signature. HER2-E was also characterized by
homogeneity at the macroscale both within and near the tumor, as detected by midwavelength
Gabor features. Peritumoral radiomics also improved the capability to distinguish HER2+ from other
breast cancers, such as TN. Our findings are consistent with those of Li et al21 and Waugh et al,19 who
observed elevated intratumoral texture entropy among HER2-E and HER2+ HR− tumors,
respectively.

We hypothesize that an elevated immune response and spatial arrangement of lymphocytes
surrounding HER2-E tumors might contribute to this unique peritumoral signature. A robust immune
response could, through mechanisms such as immune infiltration and inflammation, result in the
local heterogeneity within the tumor environment captured by CoLlAGe and Laws features.
Simultaneously, at the scale captured by Gabor features, that same immune response might appear
to be more smoothly textured than tissue with sparse lymphocyte infiltration intermixed with
healthy, tumor, and fibrotic tissue. We observed a significant correlation between peritumoral
radiomic features immediately outside the tumor and lymphocytic density on pretreatment biopsy
samples. We noted in particular that reduced expression of middle-frequency Gabor features within
this region on DCE-MRI was associated with high lymphocytic density, which was a trend further
evidenced by spatial colocalization of Gabor features and lymphocytic density on example down-
sampled hematoxylin-eosin–stained images. These findings may indicate a robust immune response
detectable at the imaging scale through peritumoral analysis, but they will require further
confirmation.

Such imaging associations with immune response have been corroborated in previous studies.
Wu et al25 reported an association between peritumoral heterogeneity and a gene signature partially
associated with immune cell recruitment and inflammation. Others have reported high lymphocytic
infiltration to be associated with texture entropy features,69 qualitative tumor enhancement profile
and margin appearance in TN tumors,70 and background parenchymal enhancement within 20 mm
from the tumor.71 Associations between intratumoral72 and peritumoral73 textural heterogeneity
features with immune response at the molecular and morphometric scale have also been reported in
the context of lung computed tomography. Recently, Chen et al74 found that incorporating
peritumoral radiomic analysis of hepatocellular cancer on contrast-enhanced MRI significantly
improved the capability to estimate the immunoscore of TIL density and arrangement compared
with a model containing only intratumoral features. Although our study explored peritumoral
radiomic associations with pathologic immune response, other biological factors may also contribute
to the unique DCE-MRI peritumoral signature of HER2-E breast cancer, such as microvessel density,47

proliferation,26 and necrosis.25

Strengths and Limitations
This work contributes to the area of breast radiomics and radiogenomics in the following ways. First,
to our knowledge, this study is the first to explore the role of the peritumoral environment in
radiogenomic subtyping from breast cancer MRI and holds important implications regarding the
biological characteristics and differential response of HER2+ subtypes. Second, we simultaneously
addressed both radiogenomic subtyping and response estimation by applying an imaging signature
of a response-associated genotype to directly identify therapeutic response. By using an approach
that combines estimative radiomics and radiogenomics, we hope to achieve both the clinical
relevance of the former with the biological interpretability of the latter. Third, we explored the
morphologic basis of our radiogenomic features through correlation with patterns of immune
infiltration on histologic findings. Thus, this work represents a possible novel confluence of
radiomics, genomics, and digital pathologic features for the purpose of biologically validated
response estimation.

Our study has limitations. First, we were able to obtain data on only 42 patients with HER2+
tumors with both genomic and imaging information to form our discovery cohort. We performed
independent testing in the context of response estimation and correlation with histomorphologic
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immune response to further substantiate our radiogenomic HER2-E signature; however, validation of
its association with molecular subtype in a larger HER2+ cohort with gene expression data will be
required. In addition, many of our data sets were highly heterogeneous, with images collected at a
number of institutional sites and with a variety of scanners. Although the multi-institutional
validation of our approach in cohorts with both high variability and homogeneous acquisition
protocols (PRC2) is a promising sign regarding its robustness, further investigation into the sensitivity
of peritumoral and intratumoral radiogenomic features to DCE-MRI acquisition is required.

Furthermore, biopsies provide only a small sample of tumor for comparison against imaging
features that were computed and summarized across a large tumor volume. Thus, the
histomorphometric associations reported in this work should be considered preliminary and will
require more extensive correlation of radiologic, molecular, and pathologic data. Ultimately, although
this signature’s association with HER2-E tumors will require further validation and will not replace
PAM50 gene testing soon, our findings suggest the significant potential of quantitative radiomic
analysis to characterize HER2+ biological characteristics pertinent to therapeutic response.

Conclusions

In this study, a radiogenomic signature from the tumor and tumor environment characterizing the
response-associated HER2-E subtype was identified, applied to estimate response to anti-HER2
therapy, and then correlated with pathologic immune response on corresponding biopsy images.
Future work will focus on validation of this signature, as well as its role in the outcome estimation and
underlying biological basis, within a large, multi-institutional data set. With additional validation,
these features could eventually result in a noninvasive method for helping to characterize tumor
biological characteristics in HER2+ tumors and evaluate benefits of targeted therapy.
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