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Abstract

Importance—Use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) is 

associated with lower risk of colorectal cancer. Prior studies examining a potential differential 

relationship of aspirin and NSAIDs with colorectal cancer risk according to genetic factors have 

been limited to analyses of candidate genes or pathways.

Objective—To comprehensively identify common genetic markers that characterize individuals 

who may obtain differential benefit from aspirin and/or NSAID chemoprevention, we tested gene 

by environment (G X E) interactions between regular use of aspirin and/or NSAIDs and single 

nucleotide polymorphisms (SNPs) across the genome in relation to risk of colorectal cancer.

Design—Case-control study using the Colon Cancer Family Registry (CCFR) and the Genetics 

and Epidemiology of Colorectal Cancer Consortium (GECCO) that enrolled cases of colorectal 

cancer ascertained between 1976 and 2011 and matched controls. Odds ratios (ORs) of colorectal 

cancer and 95% confidence intervals (95% CIs) were estimated using conventional logistic 

regression analysis and case-only interaction analysis, after adjusting for age, sex, center, the first 

three principal components to account for population structure, and known colorectal cancer risk 

factors. For all genome-wide analyses, a two-sided p-value<5.0×10-8, which yields a genome-wide 

significance level of 0.05, was considered statistically significant.

Setting—10 observational studies (5 case-control and 5 cohort studies) that were initiated 

between 1976 and 2003 across the U.S., Canada, Australia and Germany.

Participants—8,634 colorectal cancer cases and 8,553 controls of European descent.

Exposures—Genome-wide SNP data generated from genome-wide association scans and 

imputation to HapMap II, as well as information on regular use of aspirin and/or NSAIDs and 

other colorectal cancer risk factors collected using in-person interviews and/or structured 

questionnaires.

Main Outcomes and Measures—Colorectal cancer

Results—Regular use of aspirin and/or NSAIDs was associated with lower risk of colorectal 

cancer (OR=0.69; 95% CI=0.64-0.74; P=6.2×10-28) compared to non-regular use. In the 

conventional logistic regression analysis, the SNP rs2965667 at chromosome 12p12.3 near the 
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microsomal glutathione S-transferase 1 (MGST1) gene showed a genome-wide significant 

interaction with aspirin and/or NSAID use (P for interaction=4.6×10-9). Compared to non-regular 

use, regular use of aspirin and/or NSAIDs was associated with a lower risk of colorectal cancer 

among individuals with rs2965667-TT genotype (OR=0.66; 95% CI=0.61-0.70; P=7.7×10-33), but 

a higher risk among those with much less common (4%) TA or AA genotypes (OR=1.89; 95% 

CI=1.27-2.81; P=0.002). In case-only interaction analysis, the SNP rs16973225 at chromosome 

15q25.2 near the interleukin 16 (IL16) gene showed a genome-wide significant interaction with 

aspirin and/or NSAID use (P for interaction=8.2×10-9). Compared to non-regular use, regular use 

of aspirin and/or NSAIDs was associated with a lower risk of colorectal cancer among individuals 

with rs16973225-AA genotype (OR=0.66; 95% CI=0.62-0.71; P=1.9×10-30), but was not 

associated with risk of colorectal cancer among those with less common (9%) AC or CC 

genotypes (OR=0.97; 95% CI=0.78-1.20; P=0.76).

CONCLUSIONS AND RELEVANCE—In this genome-wide investigation of G X E 

interactions, use of aspirin and/or NSAIDs was associated with lower risk of colorectal cancer, 

and the association of these medications with colorectal cancer risk differed according to genetic 

variation at two SNPs at chromosomes 12 and 15. Validation of these findings in additional 

populations may facilitate targeted colorectal cancer prevention strategies.

Introduction

Considerable evidence demonstrates that aspirin and other non-steroidal anti-inflammatory 

drugs (NSAIDs) are associated with lower risk of colorectal neoplasms.1-5 However, the 

mechanisms behind this association are not well understood. Routine use of aspirin and/or 

NSAIDs for chemoprevention of cancer is not currently recommended due to uncertainty 

about its risk-benefit profile. Hence, understanding the interrelationship between genetic 

markers and use of aspirin and NSAIDs, also known as gene by environment (G X E) 

interactions, can help to identify population subgroups defined by genetic background that 

may preferentially benefit from chemopreventive use of these agents and offer novel 

insights into underlying mechanisms of carcinogenesis.

Previous genetic studies have examined the association of aspirin and/or NSAIDs with 

colorectal cancer according to a limited number of candidate genes or pathways.6-10 Thus, to 

comprehensively identify common genetic markers that characterize individuals who may 

obtain differential benefit from aspirin and NSAIDs, we conducted a discovery-based, 

genome-wide analysis of G X E interactions between regular use of aspirin and/or NSAIDs 

and single nucleotide polymorphisms (SNPs) in relation to risk of colorectal cancer.

Methods

Study population and harmonization of environmental data

We included individual-level data pooled from a case-control study from the Colon Cancer 

Family Registry (CCFR) and nine studies from the Genetics and Epidemiology of Colorectal 

Cancer Consortium (GECCO) that were initiated between 1976 and 2003, and enrolled cases 

of colorectal cancer diagnosed between 1976 and 2011, and matched controls across the 

U.S., Canada, Australia and Germany (Table 1). The cohorts are described in Supplementary 
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Material. All cases were defined as invasive colorectal adenocarcinoma and confirmed by 

medical record, pathology report, or death certificate. For prospective cohorts, nested case-

control sets were constructed by fixing the cohort at a timepoint upon which risk set 

sampling was employed to select cases and controls. For other case-control studies, 

population-based controls were used. For all studies, controls were matched on age, sex, 

race/ethnicity and in some studies on additional factors.

Study-specific eligibility and our multi-step data harmonization procedure are described in 

Supplementary Material. Briefly, within each study, all exposure information, including 

aspirin and/or NSAID use, was collected by in-person interviews and/or structured 

questionnaires with the reference time for cohort studies as the time of enrollment (WHI, 

PLCO, and VITAL) or blood draw (HPFS and NHS). Individuals with missing aspirin 

and/or NSAIDs data were excluded. The precise definition of regular use of aspirin and/or 

NSAIDs, which was determined individually by each study cohort, is provided in Table 1. 

All participants provided written or verbal informed consent and studies were reviewed and 

approved by their respective Institutional Review Boards or ethics committees.

Statistical methods

A detailed description for genotyping, quality assurance/quality control, and imputation is 

provided in Supplementary Material. Average sample and SNP call rates, and concordance 

rates for blinded duplicates are listed in Supplementary Table 1. In brief, genotyped SNPs 

were excluded based on call rate (< 98%), lack of Hardy-Weinberg Equilibrium in controls 

(HWE, P < 1×10-4), and minor allele frequency (MAF < 5% for WHI Set 1, DALS Set 1, 

and OFCCR; MAF < 5 / # of samples for each other study). As imputation of genotypes is 

standard practice in genetic association analysis, all autosomal SNPs of each study were 

imputed to the CEPH collection (CEU) population in HapMap II using IMPUTE (CCFR), 

BEAGLE (OFCCR) and MACH (all other studies). After imputation and quality control 

analyses, a total of about 2.7 million SNPs were used in the analysis. To reduce 

heterogeneity, all analyses were restricted to samples self-reported as of European descent 

and clustering with Utah residents with Northern/Western European ancestry from the CEU 

population in principal component analysis, including the HapMap II populations as 

reference.

Statistical analyses were conducted centrally on individual-level data. We adjusted for age at 

reference time, sex, center, and racial composition using the first three principal components 

from EIGENSTRAT to account for population substructure. Each directly genotyped SNP 

was coded as 0, 1, or 2 copies of the variant allele. For imputed SNPs, we used the expected 

number of copies of the variant allele which provides unbiased test statistics.11 Both 

genotyped and imputed SNPs were examined as continuous variables (i.e., assuming log-

additive effects). We analyzed each study separately using logistic regression models and 

combined study-specific results using fixed effect to obtain summary odds ratios (ORs) and 

95% confidence intervals (95% CIs). We calculated p-values for heterogeneity using 

Cochran's Q test.12 Fixed effect meta-analysis is routinely used in GWAS because it is the 

most powerful approach for identifying disease associated variants.13,14 Furthermore, in our 

study fixed effect was more appropriate than random effects since the Q-Q plots and the p-
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value distributions indicated minimal heterogeneity across studies. Moreover, the effects 

may not fit a Gaussian distribution as required by the random effects model and the limited 

number of included studies may lead to an imprecise estimate of heterogeneity.15

To test for G X E interactions between SNPs and the regular use of aspirin and/or NSAIDs 

(including use of aspirin-only, NSAIDs-only, or both aspirin and NSAIDs) or the regular use 

of aspirin-only, we used conventional case-control logistic regression and case-only 

interaction analyses. Equations for the models used in the interaction analyses are provided 

in Supplementary Material. We examined genome-wide correlations between SNPs and use 

of aspirin and/or NSAIDs using linear regression analysis, and did not observe deviation 

from independence. For all genome-wide G X E interaction analyses, a two-sided p-

value<5.0×10-8, which yields a genome-wide significance level of 0.05, was considered 

statistically significant.

As described in Supplementary Material, for each SNP showing G X E interaction with 

aspirin and/or NSAID use, we estimated the association of aspirin and/or NSAID use with 

colorectal cancer risk stratified by SNP genotypes, as well as associations in strata defined 

by SNP and aspirin and/or NSAID with one common reference group. We also estimated 

absolute risks associated with aspirin and/or NSAID use among individuals defined by 

specific genotypes based upon Surveillance, Epidemiology, and End Results (SEER) age-

adjusted colorectal cancer incidence rates (Supplementary Material. All analyses were 

conducted using R 3.1.2.

Results

The characteristics of the 8,634 colorectal cancer cases and 8,553 controls of European 

descent within each cohort from the CCFR and GECCO are provided in Table 1. As shown 

in Figure 1, compared to non-regular use, regular use of aspirin and/or NSAIDs (OR=0.69; 

95% CI=0.64-0.74; P=6.2×10-28; P for heterogeneity=0.02) or aspirin-only (OR=0.71; 95% 

CI=0.66-0.77; P=5.0×10-19; P for heterogeneity=0.01) was associated with lower risk of 

colorectal cancer.

For the conventional logistic regression interaction analysis between each SNP and aspirin 

and/or NSAID use, the p-values are shown in the Manhattan plot and Q-Q plot 

(Supplementary Figure 1). At chromosome 12p12.3, we observed SNP rs2965667 (minor 

allele frequency [MAF]=1.7%) showing a genome-wide significant interaction with regular 

use of aspirin and/or NSAIDs (P for interaction=4.6×10-9). The second top SNP, 

rs10505806 (MAF=3.8%) was also found in the same locus but it did not reach genome-

wide significant interaction (P for interaction=5.5×10-8). These two top SNPs (rs2965667 

and rs10505806) were highly correlated (D′=1.0 and r2=0.74 in HapMap CEU). In stratified 

analysis, compared to non-regular use, regular use of aspirin and/or NSAIDs was 

statistically significantly associated with lower risk of colorectal cancer among individuals 

with rs2965667-TT genotype (OR=0.66; 95% CI=0.61-0.70; P=7.7×10-33), which 

comprised 96% (n=16,465) of the population. In contrast, a higher risk was observed among 

the 4% (n=722) of the population with TA or AA genotypes (OR=1.89; 95% CI=1.27-2.81; 

P=0.002). As expected, stratified results for the highly correlated rs10505806 were similar 
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to those for rs2965667. Compared to non-regular use, regular use of aspirin and/or NSAIDs 

was statistically significantly associated with lower risk of colorectal cancer among 

individuals with rs10505806-AA genotype (OR=0.66; 95% CI=0.61-0.70; P=8.7×10-33), 

which comprised 95% (n=16,328) of the population. In contrast, a higher risk was observed 

among the 5% (n=859) of the population with AT or TT genotypes (OR=1.56; 95% 

CI=1.12-2.16; P=0.008) (Table 2/Supplementary Figure 2). Rs2965667 also appeared as the 

SNP with the lowest p-value in the exploratory analyses of aspirin-only, but it did not reach 

genome-wide significant interaction (P for interaction=8.0×10-7; P for heterogeneity=0.35) 

(Supplementary Table 2).

Both of these two highly correlated SNPs (rs2965667 and rs10505806) were imputed across 

all studies (100% study samples) with a mean imputation R2 of 0.7 for rs2965667 and 0.8 

for rs10505806 (Supplementary Table 3). To further validate accuracy of imputation, we 

conducted direct genotyping of rs10505806 in participants enrolled in the NHS (553 cases 

and 955 controls) and the HPFS (403 cases and 401 controls). The overall concordance of 

the SNP rs10505806 between imputed vs. genotyped data was high (Pearson's correlation 

coefficient r of 0.89). Among the total 956 cases and 1,356 controls within NHS and HPFS 

whom we also directly genotyped rs10505806, we compared the G X E interaction statistical 

effect using direct genotype data with the imputed data. We confirmed no material 

difference in interaction estimates (P for heterogeneity=0.50) between imputed (OR=2.57; 

95% CI=1.02-6.43; P for interaction=0.045) and directly genotyped (OR=2.19; 95% 

CI=1.04-4.59; P for interaction=0.04) data.

In case-only interaction analysis, SNP rs16973225 at chromosome 15q25.2 showed a 

genome-wide significant interaction with regular use of aspirin and/or NSAIDs (P for 

interaction=8.2×10-9). In the stratified analysis, compared to non-regular use, regular use of 

aspirin and/or NSAIDs was statistically significantly associated with lower risk of colorectal 

cancer among individuals with rs16973225-AA genotype (OR=0.66; 95% CI=0.62-0.71; 

P=1.9×10-30), which comprised 91% (n=15,616) of the population, but was not associated 

with risk of colorectal cancer among those with AC or CC genotypes (OR=0.97; 95% 

CI=0.78-1.20; P=0.76) (Table 2/Supplementary Figure 2), which comprised 9% (n=1,568) 

of the population.

The SNP rs16973225 was directly genotyped in 9 out of 15 study sets and was imputed with 

high quality (R2 of 0.9) in the remaining 6 study sets (38% of study samples) 

(Supplementary Table 3). To validate imputation of rs16973225, we compared the G X E 

interaction statistical effect with colorectal cancer between imputed vs. genotyped study sets 

in case-only interaction analysis. We found that the interaction statistical effect size was not 

different (P for heterogeneity=0.73) within cohorts based on imputed data (OR=1.68; 95% 

CI=1.30-2.17; P for interaction=4.7×10-5) compared with cohorts based on directly 

genotyped data (OR=1.59; 95% CI=1.28-1.97; P for interaction=4.2×10-5). In the case-only 

analysis of aspirin-only, we did not observe genome-wide significant interactions.

The SNP rs2965667 showing a genome-wide significant interaction with aspirin and/or 

NSAID use in conventional logistic regression case-control analysis also appeared as a 

notable variant in case-only interaction analysis, although it did not achieve a genome-wide 
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significance level (P for interaction=7.5×10-8). Similarly, the SNP rs16973225 reaching a 

genome-wide significant interaction with aspirin and/or NSAID use in case-only interaction 

analysis also showed evidence for G X E interaction in conventional logistic regression 

analysis (P for interaction=2.2×10-4).

The results for the three SNPs showing G X E interaction (rs2965667, rs10505806, and 

rs16973225) did not materially change after adjusting for additional colorectal cancer risk 

factors, including smoking status, BMI, alcohol consumption, and red meat consumption 

(Table 2/Supplementary Table 4). For these three SNPs, we show in Supplementary Table 5 

the ORs for aspirin and/or NSAID use across genotypes corresponding to 0, 1, or 2 copies of 

the variant allele; and in Supplementary Table 6 the ORs for each SNP by aspirin and/or 

NSAID use strata with one common reference group, to fully describe the interaction.

We estimated absolute risks associated with use of aspirin and/or NSAIDs among 

individuals with specific genotypes defined by each of these three SNPs. Compared with 

non-use of aspirin and/or NSAIDs, regular use of aspirin and/or NSAIDs was associated 

with 16.6 fewer colorectal cancer cases per 100,000 individuals with the rs2965667-TT 

genotype per year; 16.7 fewer colorectal cancer cases per 100,000 individuals with the 

rs10505806-AA genotype per year; and 16.8 fewer colorectal cancer cases per 100,000 

individuals with the rs16973225-AA genotype per year. In contrast, regular use of aspirin 

and/or NSAIDs was associated with 34.7 additional colorectal cancer cases per 100,000 

individuals with rs2965667-TA or AA genotypes per year; 21.1 additional colorectal cancer 

cases per 100,000 individuals with rs10505806-AT or TT genotypes per year; and only 1.5 

fewer colorectal cancer cases per 100,000 with rs16973225-AC or CC genotypes per year.

Discussion

Consistent with the preponderance of experimental, epidemiologic, and clinical trial 

evidence,1-5 we found that aspirin and/or NSAID use was associated with overall lower risk 

of colorectal cancer in this large genome-wide investigation of G X E interaction which 

included 8,634 colorectal cancer cases and 8,553 controls. However, we identified that 

aspirin and/or NSAID use was differentially associated with colorectal cancer risk according 

to genetic variation at two highly correlated SNPs at chromosome 12p12.3 (rs2965667 and 

rs10505806) using a conventional logistic regression analysis.

These SNPs are 927 kb to 971 kb downstream from microsomal glutathione S-transferase 1 

(MGST1) (Supplementary Figure 3), a member of the superfamily of Membrane-associated 

Proteins in Eicosanoid and Glutathione metabolism (MAPEG). MGST1 has high sequence 

homology to prostaglandin E synthase (MGST1L1), another homologue of the MAPEG 

family that shares 38% of its DNA sequences with MGST1.16 MGST1 and MGST1L1 are 

upregulated in several cancers, including colorectal cancer.17,18 MGST1L1 is coexpressed 

and functionally coupled to prostaglandin-endoperoxide synthase 2 (PTGS2/COX-2), and 

the combined activity of MGST1L1 and COX-2 increases production of proinflammatory 

prostaglandin E2 (PGE2), which promotes carcinogenesis through several mechanisms, 

including stimulation of WNT signaling, an essential oncogenic pathway of colorectal 

cancer.19-22 An in vitro experiment has demonstrated that NSAIDs can inhibit expression of 
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MGST1L1 and COX-2, thereby blocking COX-2 mediated synthesis of PGE2 in human 

colon carcinoma cells.23 Taken together, both MGST1L1 and the closely related gene 

MGST1 may influence NSAID-mediated inhibition of colorectal carcinogenesis partially 

through involvement in the PGE2-induced WNT signaling pathway. This finding is 

consistent with strong biologic evidence linking genes in WNT signaling, aspirin and/or 

NSAIDs, and colorectal cancer.24,25

Another candidate gene in this region is LIM domain only 3 (LMO3), a known oncogene 

located about 686 kb upstream from rs2965667 (Supplementary Figure 3). Altered 

expression of LMO3 may contribute to the development of several cancers, such as 

neuroblastoma and lung cancer.26,27

Rs2965667 is also located about 970 kb upstream from phosphatidylinositol-4-phosphate 3-

kinase, catalytic subunit type 2 gamma (PIK3C2G) (Supplementary Figure 3). The protein 

encoded by PIK3C2G gene belongs to the phosphatidylinositol-4,5-bisphosphonate 3-kinase 

(PI3K) family, which plays a critical role in cancer.28 Experimental evidence suggests that 

activation of PI3K signaling enhances COX-2/PGE2 production that results in inhibition of 

apoptosis in colon cancer cell lines that can be restored with NSAID-mediated blockade of 

PI3K.29 Moreover, our previous study found that regular use of aspirin after diagnosis was 

associated with longer survival among the 15-30% of colorectal cancer patients with a 

mutation in PIK3CA, one of the PI3K family genes.30 Markedly improved survival 

associated with aspirin according to PIK3CA status was also found in an analysis within a 

separate clinical trial cohort.31 Further investigations for the joint effect of these genes 

would be helpful to better understand the underlying molecular mechanisms of aspirin/

NSAIDs and colorectal cancer.

In the case-only interaction analysis, another SNP rs16973225 at chromosome 15q25.2 was 

identified with genome-wide significant association. This SNP is about 625 kb upstream of 

interleukin16 (IL16) (Supplementary Figure 4). As a multifunctional cytokine, IL16 plays a 

critical role in pro-inflammatory processes, including inflammatory bowel disease, 

Clostridium difficile-associated colitis, and many cancers including colorectal.32-34 

Moreover, IL16 may stimulate monocyte induction of pro-inflammatory cytokines 

associated with tumorigenesis, including IL6 and TNF (tumor necrosis factor-α),35,36 

induction of COX-2 expression, and activation of WNT signaling.36 This evidence suggests 

the possibility that polymorphisms in or near IL16 gene may regulate the production of 

inflammatory cytokines that modify the chemopreventive effect of aspirin and/or NSAIDs 

on colorectal cancer. It is plausible that those GWAS-identified promising loci outside of 

known coding regions affect more distant genes rather than the closest gene since GWAS 

loci may be enhancers that can influence gene expression over several hundred kilobases.37

Our study has several strengths. First, our large sample size facilitated detection of genome-

wide G X E interactions, even using a conventional logistic regression or case-only 

interaction analysis and accounting for the stringent threshold for statistical significance. 

Second, we identified promising variants near genes possessing high functional plausibility 

given their critical roles in inflammation and prostaglandin synthesis, which have been 

mechanistically linked to aspirin and/or NSAID use and colorectal carcinogenesis.
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We acknowledge some limitations. First, there may be heterogeneity in the definition of 

regular use of aspirin and/or NSAIDs and the range of time periods encompassed by each 

study. However, we used a standardized harmonization process on a range of environmental 

variables, including aspirin and/or NSAID use across 10 cohort and case-control studies. 

The forest plots (Figure 1) show the consistency of the association between aspirin and/or 

NSAID use and colorectal cancer on a per-study level and the pooled risk estimate (i.e., OR) 

is remarkably similar to prior studies.38 Thus, bias due to heterogeneity in the definition and 

time period of exposure is likely to be minimal. Second, we acknowledge that SNP 

rs2965667 and the highly correlated rs10505806 are relatively rare and imputed in all 

studies. However, we directly genotyped rs10505806 in cases and controls within two 

cohorts included in our study population. The high overall concordance (r=0.89) between 

imputed and directly genotyped data and the consistent G X E interaction statistical effect 

using either imputed or directly genotyped data support our assumption that our results are 

not greatly affected by the amount of imputed data.

Although prior GWAS-based studies have traditionally examined promising findings within 

a replication cohort, we did not split our data into discovery and replication sets as the most 

powerful analytical approach is a combined analysis across all studies.39 This approach is 

increasingly employed as more individual-level GWAS data are becoming available.40 

Moreover, the consistency of our findings and lack of heterogeneity across distinct study 

cohorts provides strong evidence of validation.

Conclusions

In this genome-wide investigation of G X E interactions, use of aspirin and/or NSAIDs was 

associated with lower risk of colorectal cancer, and the association of these medications with 

colorectal cancer risk differed according to genetic variation at two SNPs at chromosomes 

12 and 15. Validation of these findings in additional populations may facilitate targeted 

colorectal cancer prevention strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Main associations of regular use of aspirin and/or NSAIDs (a) and aspirin-only (b) with 
the risk of colorectal cancer
“Aspirin and/or NSAIDs” includes the regular use of aspirin-only, NSAIDs-only, or both 

aspirin and NSAIDs; and “Aspirin-only” includes the regular use of aspirin-only. The size of 

the data markers is proportional to the precision of the estimate, which is the inverse of the 

variance.
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Table 2
Risk for colorectal cancer according to regular use of aspirin and/or NSAIDs, stratified 
by the genotypes of rs2965667, rs10505806, and rs16973225

rs2965667b Non-regular aspirin and/or NSAID users Regular aspirin and/or NSAID usersa P-value

TT

 Cases/Controls 5,933/5,088 2,325/3,119

 Base Model (OR)d 1.00 0.66 (0.61-0.70) 7.7×10-33

 Multivariable-Adjusted Model (OR)e 1.00 0.63 (0.59-0.68) 2.3×10-35

TA or AA

 Cases/Controls 246/244 130/102

 Base Model (OR)d 1.00 1.89 (1.27-2.81) 0.002

 Multivariable-Adjusted Model (OR)e 1.00 1.76 (1.16-2.66) 0.008

  P for interactionf 4.6×10-9

rs10505806b Non-regular aspirin and/or NSAID users Regular aspirin and/or NSAID usersa P-value

AA

 Cases/Controls 5,896/5,039 2,301/3,092

 Base Model (OR)d 1.00 0.66 (0.61-0.70) 8.7×10-33

 Multivariable-Adjusted Model (OR)e 1.00 0.63 (0.59-0.68) 4.2×10-35

AT or TT

 Cases/Controls 283/293 154/129

 Base Model (OR)d 1.00 1.56 (1.12-2.16) 0.008

 Multivariable-Adjusted Model (OR)e 1.00 1.42 (1.01-2.00) 0.045

  P for interactionf 5.5×10-8

rs16973225c Non-regular aspirin and/or NSAID users Regular aspirin and/or NSAID usersa P-value

AA

 Cases/Controls 5,686/4,840 2,181/2,909

 Base Model (OR)d 1.00 0.66 (0.62-0.71) 1.9×10-30

 Multivariable-Adjusted Model (OR)e 1.00 0.63 (0.59-0.68) 3.5×10-33

AC or CC

 Cases/Controls 491/492 274/311

 Base Model (OR)d 1.00 0.97 (0.78-1.20) 0.760

 Multivariable-Adjusted Model (OR)e 1.00 0.93 (0.75-1.17) 0.550

  P for interactionf 8.2×10-9

The numbers of cases and controls were from the Base Model. For the SNP rs16973225, the total sample size is slightly smaller than in Table 1 due 
to missing genotype (n=3).

a
Regular use of aspirin-only, NSAIDs-only, or both aspirin and NSAIDs

b
SNPs rs2965667 and rs10505806 were identified from conventional logistic regression analysis.
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c
SNP rs16973225 was identified from case-only interaction analysis.

d
ORs in Base Models are adjusted for age at the reference time, sex, center, and the first three principal components from EIGENSTRAT.

e
ORs in Multivariable-Adjusted Models are adjusted for age at the reference time, sex, center, the first three principal components, smoking status 

(never, former, or current smoker), BMI, alcohol consumption, and red meat consumption.

f
P-values for interactions were calculated after adjusting for age at the reference time, sex, center, and the first three principal components from 

EIGENSTRAT.
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